scholarly journals Differences and similarities of stellar populations in LAEs and LBGs at z ∼ 3.4−6.8

2020 ◽  
Vol 495 (2) ◽  
pp. 1807-1824 ◽  
Author(s):  
P Arrabal Haro ◽  
J M Rodríguez Espinosa ◽  
C Muñoz-Tuñón ◽  
D Sobral ◽  
A Lumbreras-Calle ◽  
...  

ABSTRACT Lyman alpha emitters (LAEs) and Lyman break galaxies (LBGs) represent the most common groups of star-forming galaxies at high z, and the differences between their inherent stellar populations (SPs) are a key factor in understanding early galaxy formation and evolution. We have run a set of SP burst-like models for a sample of 1558 sources at 3.4 < z < 6.8 from the Survey for High-z Absorption Red and Dead Sources (SHARDS) over the GOODS-N field. This work focuses on the differences between the three different observational subfamilies of our sample: LAE–LBGs, no-Ly α LBGs, and pure LAEs. Single and double SP synthetic spectra were used to model the spectral energy distributions, adopting a Bayesian information criterion to analyze under which situations a second SP is required. We find that the sources are well modelled using a single SP in $\sim 79{{\ \rm per\ cent}}$ of the cases. The best models suggest that pure LAEs are typically young low-mass galaxies ($t\sim 26^{+41}_{-25}$ Myr; $M_{\mathrm{star}}\sim 5.6^{+12.0}_{-5.5}\times 10^{8}\ M_{\odot }$), undergoing one of their first bursts of star formation. On the other hand, no-Ly α LBGs require older SPs (t ∼ 71 ± 12 Myr), and they are substantially more massive (Mstar ∼ 3.5 ± 1.1 × 109 M⊙). LAE–LBGs appear as the subgroup that more frequently needs the addition of a second SP, representing an old and massive galaxy caught in a strong recent star-forming episode. The relative number of sources found from each subfamily at each z supports an evolutionary scenario from pure LAEs and single SP LAE–LBGs to more massive LBGs. Stellar mass functions are also derived, finding an increase of M* with cosmic time and a possible steepening of the low-mass slope from z ∼ 6 to z ∼ 5 with no significant change to z ∼ 4. Additionally, we have derived the SFR–Mstar relation, finding an $\mathrm{SFR}\propto M_{\mathrm{star}}^{\beta }$ behaviour with negligible evolution from z ∼ 4 to z ∼ 6.

2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


2012 ◽  
Vol 8 (S295) ◽  
pp. 272-281 ◽  
Author(s):  
Claudia Maraston

AbstractModelling stellar populations in galaxies is a key approach to gain knowledge on the still elusive process of galaxy formation as a function of cosmic time. In this review, after a summary of the state-of-art, I discuss three aspects of the modelling, that are particularly relevant to massive galaxies, the focus of this symposium, at low and high-redshift. These are the treatment of the Thermally-Pulsating Asymptotic Giant Branch phase, evidences of an unusual Initial Mass Function, and the effect of modern stellar libraries on the model spectral energy distribution.


2020 ◽  
Vol 495 (2) ◽  
pp. 1531-1548
Author(s):  
Edward Gillen ◽  
Lynne A Hillenbrand ◽  
John Stauffer ◽  
Suzanne Aigrain ◽  
Luisa Rebull ◽  
...  

ABSTRACT We present Mon-735, a detached double-lined eclipsing binary (EB) member of the ∼3 Myr old NGC 2264 star-forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system’s spectral energy distribution to determine self-consistent masses, radii, and effective temperatures for both stars. We find that Mon-735 comprises two pre-main-sequence M dwarfs with component masses of M = 0.2918 ± 0.0099 and 0.2661 ± 0.0095 M⊙, radii of R = 0.762 ± 0.022 and 0.748 ± 0.023 R⊙, and effective temperatures of Teff = 3260 ± 73 and 3213 ± 73 K. The two stars travel on circular orbits around their common centre of mass in P = 1.9751388 ± 0.0000050 d. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass–radius diagram (MRD) and, to a lesser extent, in the Hertzsprung–Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are ∼7–9 and 4–6 Myr, respectively, with the two components in each EB system possessing consistent ages.


1996 ◽  
Vol 175 ◽  
pp. 588-590
Author(s):  
D. Villani ◽  
S. Di Serego Alighieri

Stellar populations of high redshift radio galaxies (HzRG) (z up to 4.2) are the oldest stellar systems known, that is the ones formed at the earliest cosmological epochs. Therefore they are the best objects for providing us with information about the epoch of galaxy formation. The information on the stellar populations in HzRG are obtained from the study of their Integrated Spectral Energy Distribution (ISED) which are gathered both from spectra and integrated magnitudes. The most common approach for the interpretation of colors and spectral features of the energy distribution of galaxies is the Evolutionary Population Synthesis (EPS), which has been introduced for the first time by Tinsley in 1972. EPS models have often been used in the past to interpret the ISED of HzRG (Chambers & Charlot 1990; Lilly & Longair 1984; di Serego Alighieri et al. 1994) in order to draw conclusions on the age of the stellar populations and therefore on the epoch of galaxy formation. The results are sometimes conflicting and a number of very recent EPS models have become available (Bressan et al. 1995; Bruzual & Charlot 1993; Buzzoni 1989; Guiderdoni & Rocca-Volmerange 1987): we are therefore analysing the differences between the various EPS models with the aim of assessing their suitability to study the stellar population at early epochs. The EPS models assume for stars a given Initial Mass Function(IMF) as well as a Star Formation Rate (SFR). Then one can compute the number of stars with given mass present in the galaxy as a function of time. The position of each star in the HR diagram is determined by means of the isochrones, which are calculated from stellar evolutionary models. The ISED of a galaxy is obtained from the superposition of the spectra of single stars obtained from a stellar spectral library. Thus these models describe the galaxy ISED as a function of the time, giving a complete evolutionary picture.


2020 ◽  
Vol 642 ◽  
pp. A86
Author(s):  
P. S. Teixeira ◽  
A. Scholz ◽  
J. Alves

Previous star formation studies have, out of necessity, often defined a population of young stars confined to the proximity of a molecular cloud. Gaia allows us to examine a wider, three-dimensional structure of nearby star forming regions, leading to a new understanding of their history. We present a wide-area survey covering 494 deg2 of the Lupus complex, a prototypical low-mass star forming region. Our survey includes all known molecular clouds in this region as well as parts of the Upper Scorpius and Upper Centaurus Lupus (UCL) groups of the Sco-Cen complex. We combine Gaia DR2 proper motions and parallaxes as well as ALLWISE mid-infrared photometry to select young stellar objects (YSOs) with disks. The YSO ages are inferred from Gaia color-magnitude diagrams, and their evolutionary stages from the slope of the spectral energy distributions. We find 98 new disk-bearing sources. Our new sample includes objects with ages ranging from 1 to 15 Myr and masses ranging from 0.05 to 0.5 M⊙, and consists of 56 sources with thick disks and 42 sources with anemic disks. While the youngest members are concentrated in the clouds and at distances of 160 pc, there is a distributed population of slightly older stars that overlap in proper motion, spatial distribution, distance, and age with the Lupus and UCL groups. The spatial and kinematic properties of the new disk-bearing YSOs indicate that Lupus and UCL are not distinct groups. Our new sample comprises some of the nearest disks to Earth at these ages, and thus provides an important target for follow-up studies of disks and accretion in very low mass stars, for example with ALMA and ESO-VLT X-shooter.


2020 ◽  
Vol 636 ◽  
pp. A42 ◽  
Author(s):  
M. Mingozzi ◽  
F. Belfiore ◽  
G. Cresci ◽  
K. Bundy ◽  
M. Bershady ◽  
...  

We measured gas-phase metallicity, ionisation parameter, and dust extinction for a representative sample of 1795 local star-forming galaxies using integral field spectroscopy from the SDSS-IV MaNGA survey. We self-consistently derive these quantities by comparing observed line fluxes with photoionisation models using a Bayesian framework. We also present the first comprehensive study of the [S III]λλ9069,9532 nebular lines, which have long been predicted to be ideal tracers of the ionisation parameter. However, we find that current photoionisation model predictions substantially over-predict the intensity of the [S III] lines, while broadly reproducing other observed optical line ratios. We discuss how to nonetheless make use of the information provided by the [S III] lines by setting a prior on the ionisation parameter. Following this approach, we derive spatially resolved maps and radial profiles of metallicity and ionisation parameter. The metallicity radial profiles derived are comparable with previous works, with metallicity declining toward the outer parts and showing a flattening in the central regions. This is in agreement with infall models of galaxy formation, which predict that spiral discs build up through accretion of material, leading to an inside-out growth. On the other hand, ionisation parameter radial profiles are flat for low-mass galaxies, while their slope becomes positive as galaxy mass increases. However, the ionisation parameter maps we obtain are clumpy, especially for low-mass galaxies. The ionisation parameter is tightly correlated with the equivalent width of Hα [EW(Hα)], following a nearly universal relation, which we attribute to the change of the spectral shape of ionising sources due to ageing of H II regions. We derive a positive correlation between ionisation parameter and metallicity at fixed EW(Hα), in disagreement with previous theoretical work that predict an anti-correlation.


Author(s):  
Steven L. Finkelstein

AbstractAlthough the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.


2018 ◽  
Vol 610 ◽  
pp. A53 ◽  
Author(s):  
M. Massardi ◽  
A. F. M. Enia ◽  
M. Negrello ◽  
C. Mancuso ◽  
A. Lapi ◽  
...  

Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods. We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results. Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to ~65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions. By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high-z galaxies with high star formation rates. This is useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous high-z star-forming galaxies than was possible so far. Given our results for only two objects, they alone cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path toward addressing the role of star formation and nuclear activity in forming galaxies.


2019 ◽  
Vol 489 (1) ◽  
pp. 1436-1450 ◽  
Author(s):  
Jianhui Lian ◽  
Daniel Thomas ◽  
Cheng Li ◽  
Zheng Zheng ◽  
Claudia Maraston ◽  
...  

ABSTRACT Within the standard model of hierarchical galaxy formation in a Λ cold dark matter universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper, we investigate whether and how the gas metallicity and the star formation surface density (ΣSFR) depend on galaxy environment. To this end, we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their ΣSFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their ΣSFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion time-scales. The latter scenario better matches the observed ΣSFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion time-scale at larger radii is required. This suggests that ‘outside–in quenching’ governs the star formation processes of low-mass satellite galaxies in dense environments.


2009 ◽  
Vol 5 (S262) ◽  
pp. 400-401
Author(s):  
Ricardo Ogando ◽  
Marcio Maia ◽  
Paulo Pellegrini ◽  
Luiz da Costa

AbstractThe study of stellar populations in early-type galaxies give us clues on how they form and evolve. We calculate age, [Z/H], and [α/Fe] ratio for 162 early-type galaxies using the SSP models from Thomas, Maraston, & Bender (2003) applied to Lick indices measurements, such as Hβ, Mgb, Fe5270 and Fe5335. Those were obtained from longslit spectra observed in the ESO 1.52m telescope as described in Ogando et al. (2008). We study the relations between the SSP parameters and velocity dispersion, as well as the influence of environment on these relations. We find that age, [Z/H], and [α/Fe] correlate well with velocity dispersion, so that more massive galaxies, have on average, higher metallicities, ages and abundance ratios than that of the low-mass ones. Galaxies in high density regions are older and more metal-rich than those in regions with low number of neighbors. These results are not consistent with standard predictions of hierarchical clustering. In the last decade, this “anti-hierarchical” behavior has also been generally tagged as downsizing and has challenged the current theoretical framework of galaxy formation, calling for new ways of star formation regulation in early-type galaxies.


Sign in / Sign up

Export Citation Format

Share Document