scholarly journals Infrared spectra of pyroxenes (crystalline chain silicates) at room temperature

2020 ◽  
Vol 497 (3) ◽  
pp. 3658-3673
Author(s):  
J E Bowey ◽  
A M Hofmeister ◽  
E Keppel

ABSTRACT Crystals of pyroxene are common in meteorites but few compositions have been recognized in astronomical environments due to the limited chemistries included in laboratory studies. We present quantitative room-temperature spectra of 17 Mg-, Fe-, and Ca-bearing ortho- and clinopyroxenes, and a Ca-pyroxenoid in order to discern trends indicative of crystal structure and a wide range of composition. Data are produced using a diamond anvil cell: our band strengths are up to six times higher than those measured in KBr or polyethylene dispersions, which include variations in path length (from grain size) and surface reflections that are not addressed in data processing. Pyroxenes have varied spectra: only two bands, at 10.22  and 15.34 μm in enstatite (En99), are common to all. Peak wavelengths generally increase as Mg is replaced by Ca or Fe. However, two bands in MgFe-pyroxenes shift to shorter wavelengths as the Fe component increases from 0 to 60 per cent. A high-intensity band shifts from 11.6 to 11.2 μm and remains at 11.2 μm as Fe increases to 100 per cent; it resembles an astronomical feature normally identified with olivine or forsterite. The distinctive pyroxene bands between 13  and 16 μm show promise for their identification in Mid-Infrared-Instrumentspectra obtained with the James Webb Space Telescope. The many pyroxene bands between 40 and 80 μm could be diagnositic of silicate mineralogy if data were obtained with the proposed Space Infrared Telescope for Cosmology and Astrophysics. Our data indicate that comparison between room-temperature laboratory bands for enstatite and cold ∼10 − K astronomical dust features at wavelengths $\gtrsim 28~\mu$m can result in the identification of (Mg,Fe)- pyroxenes that contain 7–15 per cent less Fe– than their true values because some temperature shifts mimic some compositional shifts. Therefore some astronomical silicates may contain more Fe, and less Mg, than previously thought.

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 75 ◽  
Author(s):  
Linfei Yang ◽  
Lidong Dai ◽  
Heping Li ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The phase stability of epsomite under a high temperature and high pressure were explored through Raman spectroscopy and electrical conductivity measurements in a diamond anvil cell up to ~623 K and ~12.8 GPa. Our results verified that the epsomite underwent a pressure-induced phase transition at ~5.1 GPa and room temperature, which was well characterized by the change in the pressure dependence of Raman vibrational modes and electrical conductivity. The dehydration process of the epsomite under high pressure was monitored by the variation in the sulfate tetrahedra and hydroxyl modes. At a representative pressure point of ~1.3 GPa, it was found the epsomite (MgSO4·7H2O) started to dehydrate at ~343 K, by forming hexahydrite (MgSO4·6H2O), and then further transformed into magnesium sulfate trihydrate (MgSO4·3H2O) and anhydrous magnesium sulfate (MgSO4) at higher temperatures of 373 and 473 K, respectively. Furthermore, the established P-T phase diagram revealed a positive relationship between the dehydration temperature and the pressure for epsomite.


2020 ◽  
Author(s):  
Chuanfei Dong

<p>In the last two decades, the field of exoplanets has witnessed a tremendous creative surge. Research in exoplanets now encompasses a wide range of fields ranging from astrophysics to heliophysics and climate science. One of the primary objectives of studying exoplanets is to determine the criteria for habitability, and whether certain exoplanets meet these requirements. The classical definition of the Habitable Zone (HZ) is the region around a star where liquid water can exist on the planetary surface given sufficient atmospheric pressure. However, this definition largely ignores the impact of the stellar wind and stellar magnetic activity on the erosion of an exoplanet's atmosphere. Amongst the many factors that determine habitability, understanding the mechanisms of atmospheric loss is of paramount importance.</p><p>We will discuss the impact of exoplanetary space weather on the long-term climate evolution and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 planets. We will focus on a wide range of atmospheric compositions, ranging from exo-Venus candidates to Earth twins, as many factors remain unresolved at this stage. Future missions such as the James Webb Space Telescope (JWST) will play a crucial role in constraining the atmospheres of those exoplanets. For each of these cases, we will demonstrate the importance of the exoplanetary space weather on atmospheric ion loss and habitability.</p>


2021 ◽  
Author(s):  
Zhiwen Li ◽  
Xin He ◽  
Changling Zhang ◽  
Sijia Zhang ◽  
Yating Jia ◽  
...  

Abstract Searching for superconductivity with Tc near room temperature is of great interest both for fundamental science & potential applications. Here we report the experimental discovery of superconductivity with maximum critical temperature(Tc) above 210 K in calcium superhydrides, the third type hydride experimentally showing superconductivity above 200K in addition to sulfur hydride & rare earth hydride system. The materials are synthesized at the synergetic conditions of 160~190 GPa and ~2000K using diamond anvil cell combined with in-situ laser heating technique. The superconductivity was studied through in situ high pressure resistance measurements in applied magnetic field for the sample quenched from high temperature while maintained at the synthesized pressure. The upper critical field was estimated to be ~268T while the GL coherent length is ~11 Å. The in situ x ray diffractions with synchrotron suggest that the synthesized calcium hydrides are primarily composed of CaH6 while there also exist other calcium hydrids with different hydrogen.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1055
Author(s):  
Dariia Simonova ◽  
Elena Bykova ◽  
Maxim Bykov ◽  
Takaaki Kawazoe ◽  
Arkadiy Simonov ◽  
...  

A structure and equation of the state of δ-AlOOH has been studied at room temperature, up to 29.35 GPa, by means of single crystal X-ray diffraction in a diamond anvil cell using synchrotron radiation. Above ~10 GPa, we observed a phase transition with symmetry changes from P21nm to Pnnm. Pressure-volume data were fitted with the second order Birch-Murnaghan equation of state and showed that, at the phase transition, the bulk modulus (K0) of the calculated wrt 0 pressure increases from 142(5) to 216(5) GPa.


Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84216-84222 ◽  
Author(s):  
Chen Chen ◽  
Xiaoli Huang ◽  
Dongxiao Lu ◽  
Yanping Huang ◽  
Bo Han ◽  
...  

High-pressure Raman scattering studies on pure acetonitrile and an acetonitrile–water mixture at a molar ratio of (nCH3CN : nH2O) 1 : 7.25 were performed in a diamond anvil cell at room temperature.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


Author(s):  
Andrew P Jephcoat ◽  
M. Ali Bouhifd ◽  
Don Porcelli

The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5 Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid–liquid, metal–silicate (M–Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number—helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core–mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


Sign in / Sign up

Export Citation Format

Share Document