scholarly journals Hyperfine group ratio: a recipe for deriving kinetic temperature from the ammonia inversion lines

2020 ◽  
Vol 499 (3) ◽  
pp. 4432-4444
Author(s):  
Shen Wang ◽  
Zhiyuan Ren ◽  
Di Li ◽  
Jens Kauffmann ◽  
Qizhou Zhang ◽  
...  

ABSTRACT Although ammonia is a widely used interstellar thermometer, the estimation of its rotational and kinetic temperatures can be affected by the blended hyperfine components (HFCs). We have developed a new recipe, referred to as the hyperfine group ratio (HFGR), which utilizes only direct observables, namely the intensity ratios between the grouped HFCs. As tested on the model spectra, the empirical formulae in the HFGR can derive the rotational temperature (Trot) from the HFC group ratios in an unambiguous manner. We compared the HFGR with two other classical methods, intensity ratio and hyperfine fitting, based on both simulated spectra and real data. The HFGR has three major improvements. First, it does not require modelling the HFC or fitting the line profiles, so it is more robust against the effect of HFC blending. Second, the simulation-enabled empirical formulae are much faster than fitting the spectra over the parameter space, so both computer time and human time can be saved. Third, the statistical uncertainty of the temperature ΔTrot as a function of the signal-to-noise ratio (S/N) is a natural product of the HFGR recipe. The internal error of the HFGR is ΔTrot ≤ 0.5 K over a broad parameter space of rotational temperature (10–60 K), linewidth (0.3–4 km s−1) and optical depth (0–5). When there is spectral noise, the HFGR can also maintain a reasonable uncertainty level at ΔTrot ≤ 1.0 K when S/N > 4.

Geophysics ◽  
2021 ◽  
pp. 1-62
Author(s):  
Wencheng Yang ◽  
Xiao Li ◽  
Yibo Wang ◽  
Yue Zheng ◽  
Peng Guo

As a key monitoring method, the acoustic emission (AE) technique has played a critical role in characterizing the fracturing process of laboratory rock mechanics experiments. However, this method is limited by low signal-to-noise ratio (SNR) because of a large amount of noise in the measurement and environment and inaccurate AE location. Furthermore, it is difficult to distinguish two or more hits because their arrival times are very close when AE signals are mixed with the strong background noise. Thus, we propose a new method for detecting weak AE signals using the mathematical morphology character correlation of the time-frequency spectrum. The character in all hits of an AE event can be extracted from time-frequency spectra based on the theory of mathematical morphology. Through synthetic and real data experiments, we determined that this method accurately identifies weak AE signals. Compared with conventional methods, the proposed approach can detect AE signals with a lower SNR.


2021 ◽  
Vol 647 ◽  
pp. L3 ◽  
Author(s):  
J. Cernicharo ◽  
C. Cabezas ◽  
M. Agúndez ◽  
B. Tercero ◽  
N. Marcelino ◽  
...  

We present the discovery in TMC-1 of allenyl acetylene, H2CCCHCCH, through the observation of nineteen lines with a signal-to-noise ratio ∼4–15. For this species, we derived a rotational temperature of 7 ± 1 K and a column density of 1.2 ± 0.2 × 1013 cm−2. The other well known isomer of this molecule, methyl diacetylene (CH3C4H), has also been observed and we derived a similar rotational temperature, Tr = 7.0 ± 0.3 K, and a column density for its two states (A and E) of 6.5 ± 0.3 × 1012 cm−2. Hence, allenyl acetylene and methyl diacetylene have a similar abundance. Remarkably, their abundances are close to that of vinyl acetylene (CH2CHCCH). We also searched for the other isomer of C5H4, HCCCH2CCH (1.4-Pentadiyne), but only a 3σ upper limit of 2.5 × 1012 cm−2 to the column density can be established. These results have been compared to state-of-the-art chemical models for TMC-1, indicating the important role of these hydrocarbons in its chemistry. The rotational parameters of allenyl acetylene have been improved by fitting the existing laboratory data together with the frequencies of the transitions observed in TMC-1.


1987 ◽  
Vol 115 ◽  
pp. 145-146
Author(s):  
T. L. Wilson ◽  
E. Serabyn ◽  
C. Henkel ◽  
C. M. Walmsley

A fully sampled map of size ∼1′×3′ (R.A. Dec), centered on BN-KL has been made in the J = 1-0 line of 12C18O with 21″ angular resolution. The 12C18O emission is concentrated in a ← 40″ wide continuous strip running S to NE. Several maxima are superposed on the ridge, but none exceeds the average emission level by more than 40%. There is no intense peak of 12C18O J = 1-0 line emission centered on BN-KL, in contrast to maps of the dust emission. The dust and 12C18O results can be reconciled with a constant (CO/H2) ratio if there are variations in the kinetic temperature and column density of ∼50%. Peaks in both temperature and column density are then located near BN-KL, and 90″ to the south. From the estimated CO column density, about 10% of the carbon is in the form of CO. Near the BN-KL region, the 12C18O line profiles tend to become wider. These wider lines appear to be superposed on a weak, 18 km s−1 (FWHP) wide pedestal. In regions 40″ NE and 30″ S of BN-KL, the 12C18O lines have widths of less than 2 km s−1. Presumably, these are the locations of high density, quiescent molecular gas. The radial velocity of the CO emission increases from 6.5 km s−1 (at 90″ S) to 10.5 km s−1 (at 60″ NE) of BN-KL. Close to BN-KL, however, there is evidence that this trend is reversed.


1999 ◽  
Vol 194 ◽  
pp. 389-393 ◽  
Author(s):  
Lucio M. Buson ◽  
Francesco Bertola ◽  
David Burstein ◽  
Michele Cappellari ◽  
Sperello di Serego Alighieri ◽  
...  

A self-consistent analysis of near-UV, HST/FOC images of the elliptical galaxy NGC 4552 is used to show that its central spike has brightened by a factor ˜ 4.5 between 1991 and 1993, and has decreased its luminosity by a factor ˜ 2.0 between 1993 and 1996. A strong UV continuum over the energy distribution of the underlying galaxy is concurrently revealed shortward of λ ˜ 3200 Å by our FOS spectra extending from the near-UV to red wavelengths. Nuclear emission-line profiles of both permitted and forbidden lines are best modelled with a combination of broad and narrow components, with FWHM of ˜ 3000 km s−1 and ˜ 700 km s−1, respectively. Current diagnostics based on the emission line intensity ratios definitely places the spike among AGNs, just at the border between Seyferts and LINERs. This evidence argues for the variable central spike being produced by a modest accretion event onto a central massive black hole (BH), with the accreted material having possibly being stripped from a star in a close fly-by with the BH. In this regard, one has to look at NGC 4552 as the faintest known AGN.


1984 ◽  
Vol 38 (5) ◽  
pp. 663-668 ◽  
Author(s):  
Lesia L. Tyson ◽  
Yong-Chien Ling ◽  
Charles K. Mann

Two data-handling techniques, least-squares fitting and cross-correlation, have been used for three-component analysis under comparable conditions with the use of both simulated and real data Factors considered are the effect of variation in degree of peak overlap, signal-to-noise ratio, the effect of peak width variations when peak maxima occur at the same position, and the effect of varying peak intensities A series of lipid mixtures was analyzed by each method with the use of infrared absorption This permits comparison of these results with earlier reports Both least-squares and cross-correlation can be used with samples that are outside the applicable range of the earlier work In this comparison, the least-squares results are somewhat better than those from cross-correlation


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. J35-J48 ◽  
Author(s):  
Bernard Giroux ◽  
Abderrezak Bouchedda ◽  
Michel Chouteau

We introduce two new traveltime picking schemes developed specifically for crosshole ground-penetrating radar (GPR) applications. The main objective is to automate, at least partially, the traveltime picking procedure and to provide first-arrival times that are closer in quality to those of manual picking approaches. The first scheme is an adaptation of a method based on cross-correlation of radar traces collated in gathers according to their associated transmitter-receiver angle. A detector is added to isolate the first cycle of the radar wave and to suppress secon-dary arrivals that might be mistaken for first arrivals. To improve the accuracy of the arrival times obtained from the crosscorrelation lags, a time-rescaling scheme is implemented to resize the radar wavelets to a common time-window length. The second method is based on the Akaike information criterion(AIC) and continuous wavelet transform (CWT). It is not tied to the restrictive criterion of waveform similarity that underlies crosscorrelation approaches, which is not guaranteed for traces sorted in common ray-angle gathers. It has the advantage of being automated fully. Performances of the new algorithms are tested with synthetic and real data. In all tests, the approach that adds first-cycle isolation to the original crosscorrelation scheme improves the results. In contrast, the time-rescaling approach brings limited benefits, except when strong dispersion is present in the data. In addition, the performance of crosscorrelation picking schemes degrades for data sets with disparate waveforms despite the high signal-to-noise ratio of the data. In general, the AIC-CWT approach is more versatile and performs well on all data sets. Only with data showing low signal-to-noise ratios is the AIC-CWT superseded by the modified crosscorrelation picker.


2000 ◽  
Vol 176 ◽  
pp. 383-383
Author(s):  
M. H. Montgomery

Figure 1 is of the same form as Fig. 3 in Schrijvers et al. (1997): the upper part of each panel is the amplitude of the variation across the line at the mode frequency and the lower part is the phase shift of these two components across the line (in units of Φ). The parameters {Vavg, k, Ω/ω0, W} were chosen to have values representative of the δ Scuti star 4 CVn. Each panel in this array of plots has m=0, with a value of ∓ of 0, 1, or 2, and an inclination angle θi between 10° and 80°. In order to generate the synthetic line profiles, we use sampling times taken from the last week of the 1996 δ Scuti campaign on 4 CVn, and we assume that the signal-to-noise ratio of the spectrum is 250.


1960 ◽  
Vol 38 (3) ◽  
pp. 458-476 ◽  
Author(s):  
A. Vallance Jones ◽  
D. M. Hunten

Spectra of sunlit auroral rays were obtained from Saskatoon during the auroras of September 3/4 and 4/5, 1958. The resolution of these spectra was sufficiently high to enable measurements to be made of the relative intensities of the lines of the 0–0 first negative [Formula: see text] band as well as the relative intensities of bands of the Δυ = −1 sequence of this system. An analysis of the rotational line intensities shows they are consistent with an excitation process in which [Formula: see text] ions in thermal equilibrium with the atmosphere at 2200 °K fluoresce under the influence of solar radiation. The vibrational intensity distribution also is consistent with a fluorescent excitation from a state of thermal equilibrium at about 2050 °K. It is shown that the results are not consistent with a fluorescent excitation process in which the rotational and vibrational degrees of freedom of the [Formula: see text] ions come into radiative equilibrium with the solar radiation. Earlier conclusions that radiative equilibrium did hold for vibration are shown to be in error as a result of the high rotational temperature and the low dispersion used. It is concluded that the destruction of [Formula: see text] ions as a result of dissociative recombination proceeds sufficiently fast to prevent any significant approach to radiative equilibrium. This investigation provides a strong indication that the kinetic temperature of a sunlit auroral ray (perhaps in the 400–500 km region) is in the neighborhood of 2000 °K. This may be somewhat higher than the temperature of the normal atmosphere at this height.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. V59-V65 ◽  
Author(s):  
Maïza Bekara ◽  
Mirko Van der Baan

Singular value decomposition (SVD) is a coherency-based technique that provides both signal enhancement and noise suppression. It has been implemented in a variety of seismic applications — mostly on a global scale. In this paper, we use SVD to improve the signal-to-noise ratio of unstacked and stacked seismic sections, but apply it locally to cope with coherent events that vary with both time and offset. The local SVD technique is compared with [Formula: see text] deconvolution and median filtering on a set of synthetic and real-data sections. Local SVD is better than [Formula: see text] deconvolution and median filtering in removing background noise, but it performs less well in enhancing weak events or events with conflicting dips. Combining [Formula: see text] deconvolution or median filtering with local SVD overcomes the main weaknesses associated with each individual method and leads to the best results.


Sign in / Sign up

Export Citation Format

Share Document