scholarly journals Cassini CIRS and ISS opposition effects of Saturn’s rings – I. C ring narrow or broad surge?

2019 ◽  
Vol 489 (2) ◽  
pp. 2775-2791 ◽  
Author(s):  
E Déau ◽  
L Dones ◽  
L Spilker ◽  
A Flandes ◽  
K Baillié ◽  
...  

Abstract We focus on the thermal and optical opposition effects of Saturn’s C ring seen by Cassini CIRS (Composite InfraRed Spectrometer) at 15.7 ${\mu}$m and ISS (Imaging Science Subsystem) at 0.6 ${\mu}$m. The opposition surge is a brightness peak observed at low phase angle (α → 0°). Saturn rings’ opposition surge was recently observed in reflected light and thermal infrared emission by Cassini. There is debate on whether the C ring’s thermal opposition surge width is narrow (≲1°) or broad (≳30°). This surge is important because its width was used to define the scale of ring properties driving the thermal peak. We parametrize the CIRS and ISS phase curves with several morphological models to fit the surge shape. For five of the largest C ring’s plateaus, we find that their thermal surge is 10 times wider than the optical surge and that the thermal surge width (∼4°) is neither narrow, nor broad. We compare radial differences between CIRS and ISS surge morphologies with the optical depth τ (from UVIS, UltraViolet Imaging Spectrograph) and water ice band depth (from VIMS, Visual and Infrared Mapping Spectrometer) profiles. We find that: water ice band depths (microscopic ring signatures) and τ (macroscopic ring signatures) show respectively little and large contrasts between the background and the plateaus. The thermal surge amplitude and τ are correlated, and we found no band depth dependence, contrary to the optical surge amplitude, which shows no correlation with τ. These correlations suggest a macroscopic scale dominance in controlling the C ring’s thermal opposition effect.

2020 ◽  
Author(s):  
Patricio Becerra ◽  
Susan Conway ◽  
Nicholas Thomas ◽  

<p>In 2008, the High Resolution Imaging Science Experiment (HiRISE) on board NASA’s MRO fortuitously captured several discrete clouds of material in the process of cascading down a steep scarp of the water-ice-rich north polar layered deposits (NPLD). The events were only seen during a period of ~4 weeks, near the onset of martian northern spring in 2008, when the seasonal cover of CO2 is beginning to sublimate from the north polar regions. Russell et al. [1] analyzed the morphology of the clouds, inferring that the particles involved were mechanically analogous to terrestrial “dry, loose snow or dust”, so that the events were similar to terrestrial “powder avalanches” [2]. HiRISE confirmed the seasonality of avalanche occurrence the following spring, and continued to capture between 30 and 50 avalanches per season (fig. 1b,c) between 2008 and 2019, for a total of 7 Mars Years (MY29–MY35) of continuous scarp monitoring.</p><p>In this work we will present statistics on these events, in an attempt to quantify their effect on the mass balance of the NPLD, and with respect to competing processes such as viscous deformation and stress-induced block falls that do not trigger avalanches [3,4]. We also use a 1D thermal model [5] to investigate the sources and trigger mechanisms of these events. The model tracks the accumulation and ablation of seasonal CO2 frost on a martian surface. Russell et al. [1] support an initiation through gas-expansion related to the presence of CO2 frost on the scarp. Therefore the amount of frost that lingers on different sections of the model scarp at the observed time of the avalanches will provide evidence either for or against this particular mechanism. We will present preliminary results and discuss their implications.</p><p>References: [1] P. Russell et al. (2008) Geophys. Res. Lett. 35, L23204. [2] D. McClung, P.A. Schaerer (2006), Mountaineers, Seattle Wash. [3] Sori, M. M., et al., Geophys. Res. Lett., 43. [4] Byrne et al. (2016), 6th Int. Conf. Mars Polar Sci. Exploration [4] C. M. Dundas and S. Byrne (2010) Icarus 206, 716.</p>


2007 ◽  
Vol 7 (3) ◽  
pp. 721-738 ◽  
Author(s):  
D. Y. Wang ◽  
M. Höpfner ◽  
G. Mengistu Tsidu ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO3) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Statistical comparisons of MIPAS IMK-IAA HNO3 VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally ±0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO3 VMR data and the other three satellite data sets.


Author(s):  
Frances E. G. Butcher

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. Mars’ mid-latitudes (roughly 30–60° N and S) host voluminous deposits of water ice in the subsurface. At present, perennial water ice cannot exist at the surface in these regions. This is because, for a significant portion of the Martian year, surface temperatures exceed the sublimation point of water ice under Mars’ low atmospheric pressure. Therefore, any seasonal water-ice frost that accumulates in winter sublimates back into the atmosphere in spring. However, a centimeters-to-meters-thick covering of lithic material can inhibit sublimation sufficiently to allow perennial stability of ice in the subsurface. Perennial ice in Mars’ mid-latitudes exists as pore-ice and excess-ice lenses within the regolith, and as massive accumulations of buried, high-purity ice akin to debris-covered glaciers on Earth. The ice is thought to range in age from hundreds of thousands to many hundreds of millions of years old. Its emplacement and modification has been widely attributed to cyclical climate changes induced by variations in Mars’ orbital parameters (primarily its axial tilt). Water ice in Mars’ mid-latitudes is therefore of significant interest for reconstructing such climate changes. It could also provide an essential in situ supply of water for future human missions to Mars. It is possible to infer the presence of water ice in Mars’ subsurface without direct imaging of the ice itself. For example, the distribution of near-surface ice was mapped using Mars Odyssey Neutron Spectrometer detections to calculate the percentage of water-equivalent hydrogen in the upper 1 m of the regolith. Orbital images have revealed a great diversity of ice-related landforms which suggest flow, thermal cycling, sublimation, and disruption (e.g. by impact cratering) of subsurface ice. In some locations, orbital ground-penetrating radar observations have been used to confirm subsurface ice content in areas where its presence has been inferred from the geomorphology of the surface. Water ice in Mars’ mid-latitudes has also been imaged directly by landed and orbital missions. The Phoenix lander exposed water-ice lenses just centimeters beneath the surface, in trenches that it excavated at 68 °N latitude. Orbital images from the High Resolution Imaging Science Experiment (HiRISE) camera on board Mars Reconnaissance Orbiter revealed transient bright ice deposits exhumed by small, fresh impacts into mid-latitude terrains, and ~100 m-high scarps of water ice in exposures through debris-covered ice deposits. In all these cases, the exposed ice has been observed to lose mass by sublimation over time. This demonstrates the essential role of lithic cover in preserving subsurface water ice in Mars’ mid-latitudes.


1992 ◽  
Vol 46 (1) ◽  
pp. 73-78 ◽  
Author(s):  
A. M. Vassallo ◽  
P. A. Cole-Clarke ◽  
L. S. K. Pang ◽  
A. J. Palmisano

An infrared (IR) emission cell which is capable of operation up to 1500°C is described. The cell is based on an atomic absorption graphite furnace and is coupled to a Fourier transform infrared spectrometer. The spectrometer has been used to measure the emission spectrum of quartz from 200 to 1400°C, and the changes in the spectrum occurring with temperature can be related to the formation of cristobalite; transitions between low and high forms (alpha and beta forms) can also be monitored. Aragonite has also been analyzed through the temperature range 100 to 600°C, and the aragonite/calcite transition is clearly evident. The transformation of kaolinite to metakaolinite and through to mullite and cristobalite has also been studied with this in situ technique. The formation of mullite is evident in the spectrum at temperatures as low as 900°C, and the formation of cristobalite is clearly seen at 1200°C.


2009 ◽  
Vol 5 (S263) ◽  
pp. 126-130
Author(s):  
Amanda R. Hendrix ◽  
Candice J. Hansen

AbstractThe reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115–190 nm) by Cassini's UltraViolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark – darker than would be expected for pure water ice. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH3 and a small amount of a tholin in addition to H2O ice on the surface.


2006 ◽  
Vol 6 (5) ◽  
pp. 9723-9764
Author(s):  
D. Y. Wang ◽  
M. Höpfner ◽  
G. Mengistu Tsidu ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO3) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Statistical comparisons of MIPAS IMK-IAA HNO3 VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally ±0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO3 VMR data and the other three satellite data sets.


2020 ◽  
Vol 499 (1) ◽  
pp. L62-L66
Author(s):  
G Filacchione ◽  
M Ciarniello ◽  
E D’Aversa ◽  
F Capaccioni ◽  
P Cerroni ◽  
...  

ABSTRACT Photometric correction based on the Shkuratov method is applied to derive visible and infrared albedo maps of Rhea from disc-resolved Cassini VIMS data. Differently from I/F images, albedo maps offer an optimal disentanglement of composition and physical properties of the surface from illumination-viewing effects and to study spectral variations occurring at hemispherical and local scales. A similar methodology has been already applied to Dione’s and Tethys’s data sets returned by VIMS. Following the same scheme also for Rhea, spectral albedo is derived at 59 wavelengths between 0.35 and 5.047 µm. Equigonal albedo maps are rendered in cylindrical projection with a 0.5$^\circ \, \times$ 0.5° angular resolution in latitude and longitude, corresponding to a maximum spatial resolution of 6.7 km bin−1. Apart from albedo, 0.35–0.55 and 0.55–0.95 µm spectral slopes and the water ice 1.5–2.0 µm band depth maps are computed from photometric-corrected data with the specific scope to investigate the leading-trailing hemisphere colour-albedo dichotomy and to constrain spectral properties above different morphological units including fresh craters (Inktomi) and bright tectonics features (Wakonda-Avaiki Chasmata).


2018 ◽  
Vol 07 (04) ◽  
pp. 1840015 ◽  
Author(s):  
Samuel N. Richards ◽  
Samuel H. Moseley ◽  
Gordon Stacey ◽  
Matthew Greenhouse ◽  
Alexander Kutyrev ◽  
...  

The HIgh-Resolution Mid-infrarEd Spectrometer (HIRMES) is the 3rd Generation Instrument for the Stratospheric Observatory For Infrared Astronomy (SOFIA), currently in development at the NASA Goddard Space Flight Center (GSFC), and due for commissioning in 2019. By combining direct-detection Transition Edge Sensor (TES) bolometer arrays, grating-dispersive spectroscopy, and a host of Fabry-Perot tunable filters, HIRMES will provide the ability for high resolution ([Formula: see text]), mid-resolution ([Formula: see text]), and low-resolution ([Formula: see text]) slit-spectroscopy, and 2D Spectral Imaging ([Formula: see text] at selected wavelengths) over the 25–122[Formula: see text][Formula: see text]m mid to far infrared waveband. The driving science application is the evolution of proto-planetary systems via measurements of water-vapor, water-ice, deuterated hydrogen (HD), and neutral oxygen lines. However, HIRMES has been designed to be as flexible as possible to cover a wide range of science cases that fall within its phase-space, all whilst reaching sensitivities and observing powers not yet seen thus far on SOFIA, providing unique observing capabilities which will remain unmatched for decades.


1997 ◽  
Vol 161 ◽  
pp. 299-311 ◽  
Author(s):  
Jean Marie Mariotti ◽  
Alain Léger ◽  
Bertrand Mennesson ◽  
Marc Ollivier

AbstractIndirect methods of detection of exo-planets (by radial velocity, astrometry, occultations,...) have revealed recently the first cases of exo-planets, and will in the near future expand our knowledge of these systems. They will provide statistical informations on the dynamical parameters: semi-major axis, eccentricities, inclinations,... But the physical nature of these planets will remain mostly unknown. Only for the larger ones (exo-Jupiters), an estimate of the mass will be accessible. To characterize in more details Earth-like exo-planets, direct detection (i.e., direct observation of photons from the planet) is required. This is a much more challenging observational program. The exo-planets are extremely faint with respect to their star: the contrast ratio is about 10−10at visible wavelengths. Also the angular size of the apparent orbit is small, typically 0.1 second of arc. While the first point calls for observations in the infrared (where the contrast goes up to 10−7) and with a coronograph, the latter implies using an interferometer. Several space projects combining these techniques have been recently proposed. They aim at surveying a few hundreds of nearby single solar-like stars in search for Earth-like planets, and at performing a low resolution spectroscopic analysis of their infrared emission in order to reveal the presence in the atmosphere of the planet of CO H2O and O3. The latter is a good tracer of the presence of oxygen which could be, like on our Earth, released by biological activity. Although extremely ambitious, these projects could be realized using space technology either already available or in development for others missions. They could be built and launched during the first decades on the next century.


Sign in / Sign up

Export Citation Format

Share Document