scholarly journals A 9-h CV with one outburst in 4 yr of Kepler data

2019 ◽  
Vol 489 (1) ◽  
pp. 1023-1036 ◽  
Author(s):  
Zhifei Yu ◽  
J R Thorstensen ◽  
S Rappaport ◽  
A Mann ◽  
T Jacobs ◽  
...  

Abstract During a visual search through the Kepler main-field light curves, we have discovered a cataclysmic variable (CV) that experienced only a single 4-d long outburst over four years, rising to three times the quiescent flux. During the four years of non-outburst data the Kepler photometry of KIC 5608384 exhibits ellipsoidal light variations (‘ELVs’) with a ∼12 per cent amplitude and period of 8.7 h. Follow-up ground-based spectral observations have yielded a high-quality radial velocity curve and the associated mass function. Additionally, H α emission lines were present in the spectra even though these were taken while the source was presumably in quiescence. These emission lines are at least partially eclipsed by the companion K star. We utilize the available constraints of the mass function, the ELV amplitude, Roche lobe filling condition, and inferred radius of the K star to derive the system masses and orbital inclination angle: $M_{\rm wd} \simeq 0.46 \pm 0.02 \, \mathrm{M}_\odot$, $M_{\rm K} \simeq 0.41 \pm 0.03 \, \mathrm{M}_\odot$, and i ≳ 70°. The value of Mwd is the lowest reported for any accreting WD in a CV. We have also run binary evolution models using mesa to infer the most likely parameters of the pre-cataclysmic binary. Using the mass-transfer rates from the model evolution tracks we conclude that although the rates are close to the critical value for accretion disc stability, we expect KIC 5608384 to exhibit dwarf nova outbursts. We also conclude that the accreting white dwarf most likely descended from a hot subdwarf and, most notably, that this binary is one of the first bona fide examples of a progenitor of AM CVn binaries to have evolved through the CV channel.

2021 ◽  
Vol 502 (2) ◽  
pp. 2513-2517
Author(s):  
Stavros Akras ◽  
Denise R Gonçalves ◽  
Alvaro Alvarez-Candal ◽  
Claudio B Pereira

ABSTRACT We report the validation of a recently proposed infrared (IR) selection criterion for symbiotic stars (SySts). Spectroscopic data were obtained for seven candidates, selected from the SySt candidates of Akras et al. by employing the new supplementary IR selection criterion for SySts in the VST/OmegaCAM Photometric H-Alpha Survey. Five of them turned out to be genuine SySts after the detection of H α, He ii, and [O iii] emission lines as well as TiO molecular bands. The characteristic O vi Raman-scattered line is also detected in one of these SySts. According to their IR colours and optical spectra, all five newly discovered SySts are classified as S-type. The high rate of true SySts detections of this work demonstrates that the combination of the H α emission and the new IR criterion improves the selection of target lists for follow-up observations by minimizing the number of contaminants and optimizing the observing time.


2020 ◽  
Vol 642 ◽  
pp. A175
Author(s):  
Z. Butcher ◽  
W. van Driel ◽  
S. Schneider

We present a modified optical luminosity–H I mass bivariate luminosity function based on H I line observations from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES), including data from our new, four times more sensitive follow-up H I line observations obtained with the Arecibo radio telescope. The follow-up observations were designed to probe the underlying H I mass distribution of the NIBLES galaxies that were undetected or marginally detected in H I at the Nançay Radio Telescope. Our total follow-up sample consists of 234 galaxies, and it spans the entire luminosity and color range of the parent NIBLES sample of 2600 nearby (900 <  cz <  12 000 km s−1) SDSS galaxies. We incorporated the follow-up data into the bivariate analysis by scaling the NIBLES undetected fraction by an Arecibo-only distribution. We find the resulting increase in low H I mass-to-light ratio densities to be about 10% for the bins −1.0 ≤ log(MHI/M⊙/Lr/L⊙) ≤ −0.5, which produces an increased H I mass function (HIMF) low mass slope of α = −1.14 ± 0.07, being slightly shallower than the values of −1.35 ± 0.05 obtained by recent blind H I surveys. Applying the same correction to the optically corrected bivariate luminosity function from our previous paper produces a larger density increase of about 0.5 to 1 dex in the lowest H I mass-to-light ratio bins for a given luminosity while having a minimal effect on the resulting HIMF low mass slope, which still agrees with blind survey HIMFs. This indicates that while low H I-mass-to-light ratio galaxies do not contribute much to the one-dimensional HIMF, their inclusion has a significant impact on the densities in the two-dimensional distribution.


Author(s):  
Guillaume Drouart ◽  
Nick Seymour ◽  
Jess W. Broderick ◽  
José Afonso ◽  
Rajan Chhetri ◽  
...  

Abstract We previously reported a putative detection of a radio galaxy at $z=10.15$ , selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The redshift of this source, GLEAM J0917–0012, was based on three weakly detected molecular emission lines observed with the Atacama Large Millimetre Array (ALMA). In order to confirm this result, we conducted deep spectroscopic follow-up observations with ALMA and the Karl Jansky Very Large Array (VLA). The ALMA observations targeted the same CO lines previously reported in Band 3 (84–115 GHz) and the VLA targeted the CO(4-3) and [CI(1-0)] lines for an independent confirmation in Q-band (41 and 44 GHz). Neither observation detected any emission lines, removing support for our original interpretation. Adding publicly available optical data from the Hyper Suprime-Cam survey, Widefield Infrared Survey Explorer (WISE), and Herschel Space Observatory in the infrared, as well as $<$ 10 GHz polarisation and 162 MHz inter-planetary scintillation observations, we model the physical and observational characteristics of GLEAM J0917–0012 as a function of redshift. Comparing these predictions and observational relations to the data, we are able to constrain its nature and distance. We argue that if GLEAM J0917–0012 is at $z<3,$ then it has an extremely unusual nature, and that the more likely solution is that the source lies above $z=7$ .


1990 ◽  
Vol 122 ◽  
pp. 313-324
Author(s):  
Hans Ritter

AbstractIn this paper we explore to what extent the TNR model of nova outbursts and our current concepts of the formation and secular evolution of cataclysmic binaries are compatible. Specifically we address the following questions: 1) whether observational selection can explain the high white dwarf masses attributed to novae, 2) whether novae on white dwarfs in the mass range 0.6M⊙ ≲ M ≲ 0.9M⊙ can occur and how much they could contribute to the observed nova frequency, and 3) whether the high mass transfer rates imposed on the white dwarf in systems above the period gap can be accommodated by the TNR model of nova outbursts.


1989 ◽  
Vol 107 ◽  
pp. 155-164
Author(s):  
M.S. Hjellming

AbstractEvolutionary scenarios must account for Algol binaries surviving their first phase of mass transfer. The outcome of this phase is dependent upon the rapidity of the initial mass transfer, which can be estimated by calculating the radial reponse of potential progenitors to mass loss. Limits on the donor’s evolutionary state, and its companion mass, can be placed on systems which would transfer mass on a thermal or dynamical timescale. Slower mass transfer rates are necessary for the successful transition to an Algol. Considering 1.5 and 5.0 M⊙ models, the former succeed in case A and Br systems, while the latter can do so only in case A systems. To evolve into an Algol binary, all systems seem to require initial mass ratios near one.


2009 ◽  
Vol 5 (S265) ◽  
pp. 77-78
Author(s):  
Masaaki Otsuka ◽  
Akito Tajitsu ◽  
Hideyuki Izumiura ◽  
Siek Hyung

AbstractWe have performed deep high-dispersion spectroscopy to examine enhancement of s-process elements in the exremely metal-poor ([Ar/H]~−2.1) halo planetary nebulae H4-1 and BoBn1 using the 8.2-m Subaru telescope/High-Dispersion Spectrograph (HDS). We have detected several emission lines of s-process elements in H4-1 and BoBn1, and we have found that the enhancement of heavy s-process elements in these objects is comparable with that in s-process enhanced CEMP stars with [Fe/H]>−2.5. The C- and N-rich abundances of H4-1 and BoBn1 might be explained by binary evolution models. We have detected 5 fluorine lines in BoBn1. The re-estimated F abundance using these lines is [F/H]=+1.4±0.1.


2019 ◽  
Vol 622 ◽  
pp. L2 ◽  
Author(s):  
M. Gromadzki ◽  
A. Hamanowicz ◽  
L. Wyrzykowski ◽  
K. V. Sokolovsky ◽  
M. Fraser ◽  
...  

Aims. We report on the discovery and follow-up of a peculiar transient, OGLE17aaj, which occurred in the nucleus of a weakly active galaxy. We investigate whether it can be interpreted as a new candidate for a tidal disruption event (TDE). Methods. We present the OGLE-IV light curve that covers the slow 60-day-long rise to maximum along with photometric, spectroscopic, and X-ray follow-up during the first year. Results. OGLE17aaj is a nuclear transient exhibiting some properties similar to previously found TDEs, including a long rise time, lack of colour-temperature evolution, and high black-body temperature. On the other hand, its narrow emission lines and slow post-peak evolution are different from previously observed TDEs. Its spectrum and light-curve evolution is similar to F01004-2237 and AT 2017bgt. Signatures of historical low-level nuclear variability suggest that OGLE17aaj may instead be related to a new type of accretion event in active super-massive black holes.


1987 ◽  
Vol 93 ◽  
pp. 419-429
Author(s):  
A. Kovetz ◽  
D. Prialnik ◽  
M.M. Shara

AbstractAn evolutionary scenario for classical novae is proposed, which is intended to solve the discrepancies that exist between theory and observations: the space densities of classical novae deduced from surveys in the solar neighbourhood are lower by about two orders of magnitude than those predicted theoretically, and the mass transfer rates in nova binaries, as estimated from observed luminosities in quiescence, are higher than those allowed by the thermonuclear runaway model for nova outbursts. These discrepancies disappear if mass transfer (at a high rate) takes place for only a few hundred years before and a few hundred years after an eruption, but declines afterwards and remains off for most of the time between outbursts. We show that such a behavior is to be expected if one takes into account the variation of binary separation, due to mass ejection on the one hand and angular momentum losses on the other hand.One of the aspects of this scenario, on which we report in more detail, is the possibility of enhanced Roche-lobe overflow of the secondary, due to its expansion that results from irradiation by the high nova luminosity. We followed the evolution of a 0.5M⊙ main sequence star illuminated by a changing flux, typical of a classical nova. The numerical results indicate that, in spite of the slight binary separation that may occur after eruption, mass loss from the irradiated and thus bloated secondary should continue for a few hundred years. Other aspects of the variable Ṁ scenario are briefly summarized.


1996 ◽  
Vol 171 ◽  
pp. 407-407 ◽  
Author(s):  
D. Lutz ◽  
F. Prada

Near-infrared longslit spectra of NGC 253 obtained with IRSPEC at the ESO NTT are presented. By analysis of the 12CO 2.29μm bandhead we find that the stellar population in the central starburst region (r ∼ 150 pc) rotates more slowly than the gas, but has a velocity dispersion of 128 km/s, about twice the value found for emission lines from the gas in this region. This implies an about five times higher dynamical mass than previously derived (Rieke et al. 1980), removing the need to invoke a lower mass cutoff in the starburst initial mass function. The peak of near-infrared emission is displaced from the dynamical center.


1984 ◽  
Vol 108 ◽  
pp. 241-242
Author(s):  
A. P. Cowley ◽  
D. Crampton ◽  
J. B. Hutchings ◽  
R. Remillard

The best X-ray position (Einstein Observatory HRI - Giacconi et al 1979) for LMC X-3 confirms its identification with the early type star first suggested by Warren and Penfold (1975). Our spectroscopic observations obtained with the CTIO 4–m telescope show the WP star is a slightly reddened B3 V star with mV ≈ 16.9. Large radial velocity variations (Δv ≈ 500 km s−1) reveal an orbital period of 1.7049 days. From the orbital elements (Table 1) one can determine the mass function f(M) = (Mx sin i)3/(Mopt + Mx)2 = 2.3 M⊙, which shows without any assumptions about the mass of the optical star, the orbital inclination, or the mass ratio the unseen X-ray object has a mass >2.3 M⊙. Detailed analysis of the HEAO–1 scanning modulation collimator X-ray data shows that the system does not eclipse, implying that the orbital inclination is ≤ 65°. Assuming the B star mass lies between 4 and 8 M⊙ (an average mass for a normal B3 V star would be about 6–7 M⊙), the mass of the unseen companion must lie between 7 and 13 M⊙ (see Fig. 4a - Hutchings, this volume). Smaller inclinations of course give even higher masses. An important point is that the unseen star must have a mass larger than that of the B star, and thus if it were any kind of normal star it should be easily seen in the spectrum. Thus the X-ray emitting object is a very good candidate for a black hole.


Sign in / Sign up

Export Citation Format

Share Document