scholarly journals Analysis of accessible chromatin landscape in the inner cell mass and trophectoderm of human blastocysts

2020 ◽  
Vol 26 (9) ◽  
pp. 702-711
Author(s):  
Min Yang ◽  
Xin Tao ◽  
Shiny Titus ◽  
Tianhua Zhao ◽  
Richard T Scott ◽  
...  

Abstract Early embryonic development is characterized by drastic changes in chromatin structure that affects the accessibility of the chromatin. In human, the chromosome reorganization and its involvement in the first linage segregation are poorly characterized due to the difficulties in obtaining human embryonic material and limitation on low input technologies. In this study, we aimed to explore the chromatin remodeling pattern in human preimplantation embryos and gain insight into the epigenetic regulation of inner cell mass (ICM) and trophectoderm (TE) differentiation. We optimized ATAC-seq (an assay for transposase-accessible chromatin using sequencing) to analyze the chromatin accessibility landscape for low DNA input. Sixteen preimplantation human blastocysts frozen on Day 6 were used. Our data showed that ATAC peak distributions of the promoter regions (<1 kb) and distal regions versus other regions were significantly different between ICM versus TE samples (P < 0.01). We detected that a higher percentage of accessible binding loci were located within 1 kb of the transcription start site in ICM compared to TE (P < 0.01). However, a higher percentage of accessible regions was detected in the distal region of TE compared to ICM (P < 0.01). In addition, eight differential peaks with a false discovery rate <0.05 between ICM and TE were detected. This is the first study to compare the landscape of the accessible chromatin between ICM and TE of human preimplantation embryos, which unveiled chromatin-level epigenetic regulation of cell lineage specification in early embryo development.

Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J.E. Collins ◽  
J.E. Lorimer ◽  
D.R. Garrod ◽  
S.C. Pidsley ◽  
R.S. Buxton ◽  
...  

The molecular mechanisms regulating the biogenesis of the first desmosomes to form during mouse embryogenesis have been studied. A sensitive modification of a reverse transcriptase-cDNA amplification procedure has been used to detect transcripts of the desmosomal adhesive cadherin, desmocollin. Sequencing of cDNA amplification products confirmed that two splice variants, a and b, of the DSC2 gene are transcribed coordinately. Transcripts were identified in unfertilized eggs and cumulus cells and in cleavage stages up to the early 8-cell stage, were never detected in compact 8-cell embryos, but were evident again either from the 16-cell morula or very early blastocyst (approx 32-cells) stages onwards. These two phases of transcript detection indicate DSC2 is encoded by maternal and embryonic genomes. Previously, we have shown that desmocollin protein synthesis is undetectable in eggs and cleavage stages but initiates at the early blastocyst stage when desmocollin localises at, and appears to regulate assembly of, nascent desmosomes that form in the trophectoderm but not in the inner cell mass (Fleming, T. P., Garrod, D. R. and Elsmore, A. J. (1991), Development 112, 527–539). Maternal DSC2 mRNA is therefore not translated and presumably is inherited by blastomeres before complete degradation. Our results suggest, however, that initiation of embryonic DSC2 transcription regulates desmocollin protein expression and thereby desmosome formation. Moreover, data from blastocyst single cell analyses suggest that embryonic DSC2 transcription is specific to the trophectoderm lineage. Inhibition of E-cadherin-mediated cell-cell adhesion did not influence the timing of DSC2 embryonic transcription and protein expression. However, isolation and culture of inner cell masses induced an increase in the amount of DSC2 mRNA and protein detected. Taken together, these results suggest that the presence of a contact-free cell surface activates DSC2 transcription in the mouse early embryo.


Development ◽  
1982 ◽  
Vol 68 (1) ◽  
pp. 175-198
Author(s):  
R. L. Gardner

The technique of injecting genetically labelled cells into blastocysts was used in an attempt to determine whether the parietal and visceral endoderm originate from the same or different cell populations in the early embryo. When the developmental potential of 5th day primitive ectoderm and primitive endoderm cells was compared thus, only the latter were found to colonize the extraembryonic endoderm. Furthermore, single primitive endoderm cells yielded unequivocal colonization of both the parietal and the visceral endoderm in a proportion of chimaeras. However, in the majority of primitive endodermal chimaeras, donor cells were detected in the parietal endoderm only, cases of exclusively visceral colonization being rare. Visceral endoderm cells from 6th and 7th day post-implantation embryos also exhibited a striking tendency to contribute exclusively to the parietal endoderm following blastocyst injection. The above findings lend no support to a recent proposal that parietal and visceral endoderm are derived from different populations of inner cell mass cells. Rather, they suggest that the two extraembryonic endoderm layers originate from a common pool of primitive endoderm cells whose direction of differentiation depends on their interactions with non-endodermal cells.


2021 ◽  
Author(s):  
Xi Lu ◽  
Naga Prathyusha Maturi ◽  
Malin Jarvius ◽  
Linxuan Zhao ◽  
Yuan Xie ◽  
...  

AbstractThere is ample support for developmental regulation of glioblastoma stem cells (GSCs). To examine how cell lineage controls GSC function we have performed a cross-species epigenome analysis of mouse and human GSC cultures. We have analyzed and compared the chromatin-accessibility landscape of nine mouse GSC cultures of defined cell of origin and 60 patient-derived GSC cultures by assay for transposase-accessible chromatin using sequencing (ATAC-seq). This uncovered a variability of both mouse and human GSC cultures that was different from transcriptome analysis and better at predicting functional subgroups. In both species the chromatin accessibility-guided clusters were predominantly determined by distal regulatory element (DRE) regions, displayed contrasting sets of transcription factor binding motifs, and exhibited different functional and drug-response properties. Cross-species analysis of DRE regions in accessible chromatin revealed conserved epigenetic regulation of mouse and human GSCs. Human ATAC-seq data produced three distinct clusters with significant overlap to our previous mouse cell of origin- based stratification, where two of the clusters displayed significantly different patient survival. We conclude that epigenetic regulation of GSCs primarily is dictated by developmental origin which controls key GSC properties and affects therapeutic response.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii2-ii2
Author(s):  
Xi Lu ◽  
Naga Prathyusha Maturi ◽  
Malin Jarvius ◽  
Linxuan Zhao ◽  
Yuan Xie ◽  
...  

Abstract There is ample support for developmental control of glioblastoma stem cells (GSCs), and a deeper knowledge of their epigenetic regulation could be central to more efficient glioblastoma (GBM) therapies. For this purpose, we analyzed the chromatin-accessibility landscape of nine mouse GSC cultures of defined cell of origin and 60 patient-derived GSC cultures by assay for transposase-accessible chromatin using sequencing (ATAC-seq). This uncovered an epigenetic variability of both mouse and human GSC cultures that differed from transcriptome clusters. Both mouse and human chromatin accessibility-guided clusters were predominantly determined by distal regulatory elements, displayed unique sets of transcription factor motif enrichment, and exhibited different functional and drug-response properties. Cross-species analysis of distal regulatory element regions in accessible chromatin of mouse and human cultures revealed conserved epigenetic regulation of GSCs.


2020 ◽  
Author(s):  
Mohammad Jaber ◽  
Ahmed Radwan ◽  
Netanel Loyfer ◽  
Mufeed Abdeen ◽  
Shulamit Sebban ◽  
...  

Following fertilization, totipotent cells divide to generate two compartments in the early embryo: the inner cell mass (ICM) and trophectoderm (TE). It is only at the 32-64 -cell stage when a clear segregation between the two cell-types is observed, suggesting a ‘T’-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro by nuclear reprogramming share similar dynamics/trajectories. We conducted a comparative parallel multi-omics analysis on cells undergoing reprogramming to Induced pluripotent stem cells (iPSCs) and induced trophoblast stem cells (TSCs), and examined their transcriptome, methylome, chromatin accessibility and activity and genomic stability. Our analysis revealed that cells undergoing reprogramming to pluripotency and TSC state exhibit specific trajectories from the onset of the process, suggesting ‘V’-shaped model. Using these analyses, not only we could describe in detail the various trajectories toward the two states, we also identified previously unknown stage-specific reprogramming markers as well as markers for faithful reprogramming and reprogramming blockers. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these specific regions are initially open but then retain inactive by the elimination of the histone mark, H3K27ac.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


Author(s):  
Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1353-1361
Author(s):  
J.M. Baltz ◽  
J.D. Biggers ◽  
C. Lechene

Most cell types are relatively impermeant to H+ and are able to regulate their intracellular pH by means of plasma membrane proteins, which transport H+ or bicarbonate across the membrane in response to perturbations of intracellular pH. Mouse preimplantation embryos at the 2-cell stage, however, do not appear to possess specific pH-regulatory mechanisms for relieving acidosis. They are, instead, highly permeable to H+, so that the intracellular pH in the acid and neutral range is determined by the electrochemical equilibrium of H+ across the plasma membrane. When intracellular pH is perturbed, the rate of the ensuing H+ flux across the plasma membrane is determined by the H+ electrochemical gradient: its dependence on external K+ concentration indicates probable dependence on membrane potential and the rate depends on the H+ concentration gradient across the membrane. The large permeability at the 2-cell stage is absent or greatly diminished in the trophectoderm of blastocysts, but still present in the inner cell mass. Thus, the permeability to H+ appears to be developmentally regulated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yasumitsu Masuda ◽  
Ryo Hasebe ◽  
Yasushi Kuromi ◽  
Masayoshi Kobayashi ◽  
Kanako Urataki ◽  
...  

Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.


Reproduction ◽  
2015 ◽  
Vol 150 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Young-Ho Choi ◽  
Pablo Ross ◽  
Isabel C Velez ◽  
B Macías-García ◽  
Fernando L Riera ◽  
...  

Equine embryos developin vitroin the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31–46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively forPOU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did.GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation inin vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse.


Sign in / Sign up

Export Citation Format

Share Document