scholarly journals DIANA-miTED: a microRNA tissue expression database

2021 ◽  
Author(s):  
Ioannis Kavakiotis ◽  
Athanasios Alexiou ◽  
Spyros Tastsoglou ◽  
Ioannis S Vlachos ◽  
Artemis G Hatzigeorgiou

Abstract microRNAs (miRNAs) are short (∼23nt) single-stranded non-coding RNAs that act as potent post-transcriptional gene expression regulators. Information about miRNA expression and distribution across cell types and tissues is crucial to the understanding of their function and for their translational use as biomarkers or therapeutic targets. DIANA-miTED is the most comprehensive and systematic collection of miRNA expression values derived from the analysis of 15 183 raw human small RNA-Seq (sRNA-Seq) datasets from the Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA). Metadata quality maximizes the utility of expression atlases, therefore we manually curated SRA and TCGA-derived information to deliver a comprehensive and standardized set, incorporating in total 199 tissues, 82 anatomical sublocations, 267 cell lines and 261 diseases. miTED offers rich instant visualizations of the expression and sample distributions of requested data across variables, as well as study-wide diagrams and graphs enabling efficient content exploration. Queries also generate links towards state-of-the-art miRNA functional resources, deeming miTED an ideal starting point for expression retrieval, exploration, comparison, and downstream analysis, without requiring bioinformatics support or expertise. DIANA-miTED is freely available at http://www.microrna.gr/mited.

2018 ◽  
Author(s):  
Nuno Saraiva-Agostinho ◽  
Nuno L. Barbosa-Morais

Alternative pre-mRNA splicing generates functionally distinct transcripts from the same gene and is involved in the control of multiple cellular processes, with its dysregulation being associated with a variety of pathologies. The advent of next-generation sequencing has enabled global studies of alternative splicing in different physiological and disease contexts. However, current bioinformatics tools for alternative splicing analysis from RNA-seq data are not user-friendly, disregard available exon-exon junction quantification or have limited downstream analysis features. To overcome such limitations, we have developedpsichomics, an R package with an intuitive graphical interface for alternative splicing quantification and downstream dimensionality reduction, differential splicing and gene expression and survival analyses based on The Cancer Genome Atlas, the Genotype-Tissue Expression project and user-provided data. These integrative analyses can also incorporate clinical and molecular sample-associated features. We successfully usedpsichomicsto reveal alternative splicing signatures specific to stage I breast cancer and associated novel putative prognostic factors.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Yu Pan ◽  
Wei-Ting Kuo ◽  
Chien-Yuan Chiu ◽  
Wen-chang Lin

MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.


2017 ◽  
Author(s):  
Qingguo Wang ◽  
Joshua Armenia ◽  
Chao Zhang ◽  
Alexander V. Penson ◽  
Ed Reznik ◽  
...  

AbstractDriven by the recent advances of next generation sequencing (NGS) technologies and an urgent need to decode complex human diseases, a multitude of large-scale studies were conducted recently that have resulted in an unprecedented volume of whole transcriptome sequencing (RNA-seq) data. While these data offer new opportunities to identify the mechanisms underlying disease, the comparison of data from different sources poses a great challenge, due to differences in sample and data processing. Here, we present a pipeline that processes and unifies RNA-seq data from different studies, which includes uniform realignment and gene expression quantification as well as batch effect removal. We find that uniform alignment and quantification is not sufficient when combining RNA-seq data from different sources and that the removal of other batch effects is essential to facilitate data comparison. We have processed data from the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA) and have successfully corrected for study-specific biases, enabling comparative analysis across studies. The normalized data are available for download via GitHub (at https://github.com/mskcc/RNAseqDB).


2019 ◽  
Author(s):  
Julianne K. David ◽  
Sean K. Maden ◽  
Benjamin R. Weeder ◽  
Reid F. Thompson ◽  
Abhinav Nellore

ABSTRACTWe compared cancer and non-cancer RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project, and the Sequence Read Archive (SRA). We found that: 1) averaging across cancer types, 80.6% of exon-exon junctions thought to be cancer-specific based on comparison with tissue-matched samples are in fact present in other adult non-cancer tissues throughout the body; 2) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and 3) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average) are also found in embryological and other developmentally associated cells. This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA-seq datasets. Overall, we identify a subset of shared cancer-specific junctions that could represent novel sources of cancer neoantigens. We further describe a framework for characterizing possible origins of these junctions, including potential developmental and embryological sources, as well as cell type-specific markers particularly related to cell types of cancer origin. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon-exon junctions may affect the anti-cancer immune response and may have a substantial causal relationship with the biology of disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suleyman Vural ◽  
Lun-Ching Chang ◽  
Laura M. Yee ◽  
Dmitriy Sonkin

AbstractTP53 is one of the most frequently altered genes in cancer; it can be inactivated by a number of different mechanisms. NM_000546.6 (ENST00000269305.9) is by far the predominant TP53 isoform, however a few other alternative isoforms have been described to be expressed at much lower levels. To better understand patterns of TP53 alternative isoforms expression in cancer and normal samples we performed exon-exon junction reads based analysis of TP53 isoforms using RNA-seq data from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) project. TP53 C-terminal alternative isoforms have abolished or severely decreased tumor suppressor activity, and therefore, an increase in fraction of TP53 C-terminal alternative isoforms may be expected in tumors with wild type TP53. Despite our expectation that there would be increase of fraction of TP53 C-terminal alternative isoforms, we observed no substantial increase in fraction of TP53 C-terminal alternative isoforms in TCGA tumors and CCLE cancer cell lines with wild type TP53, likely indicating that TP53 C-terminal alternative isoforms expression cannot be reliably selected for during tumor progression.


2018 ◽  
Vol 19 (10) ◽  
pp. 3250 ◽  
Author(s):  
Anna Sorrentino ◽  
Antonio Federico ◽  
Monica Rienzo ◽  
Patrizia Gazzerro ◽  
Maurizio Bifulco ◽  
...  

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein–protein, protein–RNA, or protein–DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


NAR Cancer ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Julianne K David ◽  
Sean K Maden ◽  
Benjamin R Weeder ◽  
Reid F Thompson ◽  
Abhinav Nellore

Abstract This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA sequencing (RNA-seq) datasets. We compared cancer and non-cancer RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project and the Sequence Read Archive. We found that (i) averaging across cancer types, 80.6% of exon–exon junctions thought to be cancer-specific based on comparison with tissue-matched samples (σ = 13.0%) are in fact present in other adult non-cancer tissues throughout the body; (ii) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and (iii) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average, σ = 2.4%) are also found in embryological and other developmentally associated cells. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon–exon junctions may have a substantial causal relationship with the biology of disease.


Author(s):  
Pora Kim ◽  
Mengyuan Yang ◽  
Ke Yiya ◽  
Weiling Zhao ◽  
Xiaobo Zhou

AbstractExon skipping (ES) is reported to be the most common alternative splicing event due to loss of functional domains/sites or shifting of the open reading frame (ORF), leading to a variety of human diseases and considered therapeutic targets. To date, systematic and intensive annotations of ES events based on the skipped exon units in cancer and normal tissues are not available. Here, we built ExonSkipDB, the ES annotation database available at https://ccsm.uth.edu/ExonSkipDB/, aiming to provide a resource and reference for functional annotation of ES events in multiple cancer and tissues to identify therapeutically targetable genes in individual exon units. We collected 14 272 genes that have 90 616 and 89 845 ES events across 33 cancer types and 31 normal tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). For the ES events, we performed multiple functional annotations. These include ORF assignment of exon skipped transcript, studies of lost protein functional features due to ES events, and studies of exon skipping events associated with mutations and methylations based on multi-omics evidence. ExonSkipDB will be a unique resource for cancer and drug research communities to identify therapeutically targetable exon skipping events.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Claire Lailler ◽  
Christophe Louandre ◽  
Mony Chenda Morisse ◽  
Thomas Lhossein ◽  
Corinne Godin ◽  
...  

Abstract The tumor microenvironment is an important determinant of glioblastoma (GBM) progression and response to treatment. How oncogenic signaling in GBM cells modulates the composition of the tumor microenvironment and its activation is unclear. We aimed to explore the potential local immunoregulatory function of ERK1/2 signaling in GBM. Using proteomic and transcriptomic data (RNA seq) available for GBM tumors from The Cancer Genome Atlas (TCGA), we show that GBM with high levels of phosphorylated ERK1/2 have increased infiltration of tumor-associated macrophages (TAM) with a non-inflammatory M2 polarization. Using three human GBM cell lines in culture, we confirmed the existence of ERK1/2-dependent regulation of the production of the macrophage chemoattractant CCL2/MCP1. In contrast with this positive regulation of TAM recruitment, we found no evidence of a direct effect of ERK1/2 signaling on two other important aspects of TAM regulation by GBM cells: (1) the expression of the immune checkpoint ligands PD-L1 and PD-L2, expressed at high mRNA levels in GBM compared with other solid tumors; (2) the production of the tumor metabolite lactate recently reported to dampen tumor immunity by interacting with the receptor GPR65 present on the surface of TAM. Taken together, our observations suggest that ERK1/2 signaling regulates the recruitment of TAM in the GBM microenvironment. These findings highlight some potentially important particularities of the immune microenvironment in GBM and could provide an explanation for the recent observation that GBM with activated ERK1/2 signaling may respond better to anti-PD1 therapeutics.


Sign in / Sign up

Export Citation Format

Share Document