scholarly journals Genomic impact of stress-induced transposable element mobility in Arabidopsis

2021 ◽  
Vol 49 (18) ◽  
pp. 10431-10447
Author(s):  
David Roquis ◽  
Marta Robertson ◽  
Liang Yu ◽  
Michael Thieme ◽  
Magdalena Julkowska ◽  
...  

Abstract Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.

Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 125-138 ◽  
Author(s):  
T Hazelrigg ◽  
S Petersen

Abstract The white gene in the AR4-24 P[white,rosy] insertion on chromosome 2 has a novel expression pattern, in which it is repressed in the dorsal half of the eye. X-ray mutagenesis led to the isolation of six revertants mapping to chromosome 2, which are wild type in a zeste+ background, and three extreme derivatives, in which white gene expression is repressed in ventral regions of the eye as well. By Southern blot analyses the breakpoints of five of the revertants and one of the extreme derivatives were mapped in the flanking DNA bordering each side of the AR4-24 insertion. The revertants show some dorsal repression of white in the presence of z1, and by this criterion each is only a partial revertant. The extreme derivatives act not only in cis, but also in trans to repress expression of AR4-24 and its various derivatives. We provide evidence that these trans effects are proximity-dependent effects, possibly mediated by pairing of gene copies, as they do not extend to copies of the white gene located elsewhere in the genome. We show that one extreme derivative, E1, is a small deletion spanning the insertion site at the 5' end of the white gene, and propose that the distance between a negative regulatory element in the 5' flanking DNA and the white promoter influences the degree of the repression.


2015 ◽  
Author(s):  
Konstantin N Kozlov ◽  
Vitaly V Gursky ◽  
Ivan V Kulakovskiy ◽  
Maria G Samsonova

Background: The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. Results: We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and the set, from which the site of interest was left out. Conclusions: The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model output; 3) functional important sites are not exclusively located in cis-regulatory elements, but are rather dispersed through regulatory region. It is of importance that some of the sites with high functional impact in hb, Kr and kni regulatory regions coincide with strong sites annotated and verified in Dnase I footprint assays. Keywords: transcription; thermodynamics; reaction-diffusion; drosophila


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3590 ◽  
Author(s):  
Eldad Gutner-Hoch ◽  
Hiba Waldman Ben-Asher ◽  
Ruth Yam ◽  
Aldo Shemesh ◽  
Oren Levy

Reef building corals precipitate calcium carbonate as an exo-skeleton and provide substratum for prosperous marine life. Biomineralization of the coral’s skeleton is a developmental process that occurs concurrently with other proliferation processes that control the animal extension and growth. The development of the animal body is regulated by large gene regulatory networks, which control the expression of gene sets that progressively generate developmental patterns in the animal body. In this study we have explored the gene expression profile and signaling pathways followed by the calcification process of a basal metazoan, the Red Sea scleractinian (stony) coral,Stylophora pistillata. When treated by seawater with high calcium concentrations (addition of 100 gm/L, added as CaCl2.2H2O), the coral increases its calcification rates and associated genes were up-regulated as a result, which were then identified. Gene expression was compared between corals treated with elevated and normal calcium concentrations. Calcification rate measurements and gene expression analysis by microarray RNA transcriptional profiling at two time-points (midday and night-time) revealed several genes common within mammalian gene regulatory networks. This study indicates that core genes of the Wnt and TGF-β/BMP signaling pathways may also play roles in development, growth, and biomineralization in early-diverging organisms such as corals.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247783
Author(s):  
Yan Zhang ◽  
Haoxuan Min ◽  
Chengchen Shi ◽  
Gengshou Xia ◽  
Zhibing Lai

Autophagy plays a critical role in plant heat tolerance in part by targeting heat-induced nonnative proteins for degradation. Autophagy also regulates metabolism, signaling and other processes and it is less understood how the broad function of autophagy affects plant heat stress responses. To address this issue, we performed transcriptome profiling of Arabidopsis wild-type and autophagy-deficient atg5 mutant in response to heat stress. A large number of differentially expressed genes (DEGs) were identified between wild-type and atg5 mutant even under normal conditions. These DEGs are involved not only in metabolism, hormone signaling, stress responses but also in regulation of nucleotide processing and DNA repair. Intriguingly, we found that heat treatment resulted in more robust changes in gene expression in wild-type than in the atg5 mutant plants. The dampening effect of autophagy deficiency on heat-regulated gene expression was associated with already altered expression of many heat-regulated DEGs prior to heat stress in the atg5 mutant. Altered expression of a large number of genes involved in metabolism and signaling in the autophagy mutant prior to heat stress may affect plant response to heat stress. Furthermore, autophagy played a positive role in the expression of defense- and stress-related genes during the early stage of heat stress responses but had little effect on heat-induced expression of heat shock genes. Taken together, these results indicate that the broad role of autophagy in metabolism, cellular homeostasis and other processes can also potentially affect plant heat stress responses and heat tolerance.


2014 ◽  
Author(s):  
Max V Staller ◽  
Charless C Fowlkes ◽  
Meghan D.J. Bragdon ◽  
Zeba B. Wunderlich ◽  
Angela DePace

In developing embryos, gene regulatory networks canalize cells towards discrete terminal fates. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos depleted of a key maternal input, bicoid (bcd), by building a cellular- resolution gene expression atlas containing measurements of 12 core patterning genes over 6 time points in early development. With this atlas, we determine the precise perturbation each cell experiences, relative to wild type, and observe how these cells assume cell fates in the perturbed embryo. The first zygotic layer of the network, consisting of the gap and terminal genes, is highly robust to perturbation: all combinations of transcription factor expression found in bcd depleted embryos were also found in wild type embryos, suggesting that no new cell fates were created even at this very early stage. All of the gap gene expression patterns in the trunk expand by different amounts, a feature that we were unable to explain using two simple models of the effect of bcd depletion. In the second layer of the network, depletion of bcd led to an excess of cells expressing both even skipped and fushi tarazu early in the blastoderm stage, but by gastrulation this overlap resolved into mutually exclusive stripes. Thus, following depletion of bcd, individual cells rapidly canalize towards normal cell fates in both layers of this gene regulatory network. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further modeling of canalization in this transcriptional network.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Sign in / Sign up

Export Citation Format

Share Document