scholarly journals QTLbase: an integrative resource for quantitative trait loci across multiple human molecular phenotypes

2019 ◽  
Vol 48 (D1) ◽  
pp. D983-D991 ◽  
Author(s):  
Zhanye Zheng ◽  
Dandan Huang ◽  
Jianhua Wang ◽  
Ke Zhao ◽  
Yao Zhou ◽  
...  

Abstract Recent advances in genome sequencing and functional genomic profiling have promoted many large-scale quantitative trait locus (QTL) studies, which connect genotypes with tissue/cell type-specific cellular functions from transcriptional to post-translational level. However, no comprehensive resource can perform QTL lookup across multiple molecular phenotypes and investigate the potential cascade effect of functional variants. We developed a versatile resource, named QTLbase, for interpreting the possible molecular functions of genetic variants, as well as their tissue/cell-type specificity. Overall, QTLbase has five key functions: (i) curating and compiling genome-wide QTL summary statistics for 13 human molecular traits from 233 independent studies; (ii) mapping QTL-relevant tissue/cell types to 78 unified terms according to a standard anatomogram; (iii) normalizing variant and trait information uniformly, yielding >170 million significant QTLs; (iv) providing a rich web client that enables phenome- and tissue-wise visualization; and (v) integrating the most comprehensive genomic features and functional predictions to annotate the potential QTL mechanisms. QTLbase provides a one-stop shop for QTL retrieval and comparison across multiple tissues and multiple layers of molecular complexity, and will greatly help researchers interrogate the biological mechanism of causal variants and guide the direction of functional validation. QTLbase is freely available at http://mulinlab.org/qtlbase.

2021 ◽  
Author(s):  
Antonino Zito ◽  
Amy L Roberts ◽  
Alessia Visconti ◽  
Niccolo' Rossi ◽  
Rosa Andres-Ejarque ◽  
...  

X-chromosome inactivation (XCI) silences one X-chromosome in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. In order to characterize the incidence and variability of escape across individuals and tissues, we conducted a large scale transcriptomic study of XCI escape in adipose, skin, lymphoblastoid cell lines (LCLs) and immune cells in 248 twins drawn from a healthy population cohort. We identify 159 X-linked genes with detectable escape, of which 54 genes, including 19 lncRNAs, were not previously known to escape XCI. Across tissues we find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 24% demonstrating tissue-restricted escape, including genes with cell-type specific escape between immune cell types (B, T-CD4+, T-CD8+ and NK cells) of the same individual. Escape genes interact with autosomal-encoded proteins and are involved in varied biological processes such as gene regulation. We find substantial variability in escape between individuals. 49% of genes show inter-individual variability in escape, indicating escape from XCI is an under-appreciated source of gene expression differences. We utilized twin models to investigate the role of genetics in variable escape. Overall, monozygotic (MZ) twin pairs share more similar escape than dizygotic twin pairs, indicating that genetic factors underlie differences in escape across individuals. However, we also identify instances of discordant XCI within MZ co-twin pairs, suggesting that environmental factors also influence escape. Thus, XCI escape may be shaped by an interplay of genetic factors with tissue- and cell type-specificity, and environment. These results illuminate an intricate phenotype whose characterization aids understanding the basis of variable trait expressivity in females.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Jordan A. Ramilowski ◽  
Tatyana Goldberg ◽  
Jayson Harshbarger ◽  
Edda Kloppmann ◽  
Marina Lizio ◽  
...  

Abstract Cell-to-cell communication across multiple cell types and tissues strictly governs proper functioning of metazoans and extensively relies on interactions between secreted ligands and cell-surface receptors. Herein, we present the first large-scale map of cell-to-cell communication between 144 human primary cell types. We reveal that most cells express tens to hundreds of ligands and receptors to create a highly connected signalling network through multiple ligand–receptor paths. We also observe extensive autocrine signalling with approximately two-thirds of partners possibly interacting on the same cell type. We find that plasma membrane and secreted proteins have the highest cell-type specificity, they are evolutionarily younger than intracellular proteins, and that most receptors had evolved before their ligands. We provide an online tool to interactively query and visualize our networks and demonstrate how this tool can reveal novel cell-to-cell interactions with the prediction that mast cells signal to monoblastic lineages via the CSF1–CSF1R interacting pair.


2016 ◽  
Author(s):  
Yue Li ◽  
Jose Davila-Velderrain ◽  
Manolis Kellis

AbstractDissecting the physiological circuitry underlying diverse human complex traits associated with heritable common mutations is an ongoing effort. The primary challenge involves identifying the relevant cell types and the causal variants among the vast majority of the associated mutations in the noncoding regions. To address this challenge, we developed an efficient probabilistic framework. First, we propose a sparse group-guided learning algorithm to infer cell-type-specific enrichments. Second, we propose a fine-mapping Bayesian model that incorporates as Bayesian priors the sparse enrichments to infer risk variants. Using the proposed framework to analyze 32 complex human traits revealed meaningful tissue-specific epigenomic enrichments indicative of the relevant disease pathologies. The prioritized variants exhibit prominent tissue-specific epigenomic signatures and significant enrichments for eQTL and conserved elements. Together, we demonstrate the general benefits of the proposed integrative framework in elucidating meaningful tissue-specific epigenomic elements from large-scale correlated annotations and the implicated functional variants for future experimental interrogation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


1985 ◽  
Vol 5 (2) ◽  
pp. 419-421
Author(s):  
K M Zezulak ◽  
H Green

During the differentiation of preadipose 3T3 cells into adipose cells, the mRNAs for three proteins increase strikingly in abundance. To determine the degree of cell-type specificity in the expression of these mRNAs, we estimated their abundances in several nonadipose tissues of the mouse. None of these mRNAs was strictly confined to adipocytes, but the ensemble of three mRNAs was rather specific to adipocytes. Insofar as is revealed by these three markers, the distinctive phenotype of adipocytes is the result of the enhanced expression of a number of genes, none of which is completely silent in all other cell types.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2021 ◽  
Author(s):  
Asif Zubair ◽  
Richard H. Chapple ◽  
Sivaraman Natarajan ◽  
William C. Wright ◽  
Min Pan ◽  
...  

The disorganization of cell types within tissues underlies many human diseases and has been studied for over a century using the conventional tools of pathology, including tissue-marking dyes such as the H&E stain. Recently, spatial transcriptomics technologies were developed that can measure spatially resolved gene expression directly in pathology-stained tissues sections, revealing cell types and their dysfunction in unprecedented detail. In parallel, artificial intelligence (AI) has approached pathologist-level performance in computationally annotating H&E images of tissue sections. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and AI-based pathology has performed less impressively outside their training datasets. Here, we describe a methodology that can computationally integrate AI-annotated pathology images with spatial transcriptomics data to markedly improve inferences of tissue cell type composition made over either class of data alone. We show that this methodology can identify regions of clinically relevant tumor immune cell infiltration, which is predictive of response to immunotherapy and was missed by an initial pathologist's manual annotation. Thus, combining spatial transcriptomics and AI-based image annotation has the potential to exceed pathologist-level performance in clinical diagnostic applications and to improve the many applications of spatial transcriptomics that rely on accurate cell type annotations.


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Kenneth Pham ◽  
Neda Masoudi ◽  
Eduardo Leyva-Díaz ◽  
Oliver Hobert

Abstract We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4–10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


2021 ◽  
Vol 53 (9) ◽  
pp. 1290-1299
Author(s):  
Nurlan Kerimov ◽  
James D. Hayhurst ◽  
Kateryna Peikova ◽  
Jonathan R. Manning ◽  
Peter Walter ◽  
...  

AbstractMany gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue (https://www.ebi.ac.uk/eqtl), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.


Sign in / Sign up

Export Citation Format

Share Document