scholarly journals ATRT-11. PREVALENCE OF GERMLINE VARIANTS IN SMARCB1 INCLUDING SOMATIC MOSAICISM IN AT/RT AND OTHER RHABDOID TUMORS

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii277-iii278
Author(s):  
Ryota Shirai ◽  
Tomoo Osumi ◽  
Keita Terashima ◽  
Chikako Kiyotani ◽  
Meri Uchiyama ◽  
...  

Abstract BACKGROUND Genetic hallmark of atypical teratoid/rhabdoid tumor (AT/RT) is loss-of-function variants or deletions in SMARCB1 gene on 22q11.2 chromosome, which is common to extracranial malignant rhabdoid tumors (MRT). Previous studies demonstrated that approximately one-thirds of AT/RT and extracranial MRT patients harbored germline SMARCB1 variants as the rhabdoid tumor predisposing syndrome. We studied herein intensive analysis of the SMARCB1 gene in AT/RT and extracranial MRT patients focusing on prevalence of germline genetic variants. PROCEDURE: In total, 16 patients were included. Both tumor-derived DNA and germline DNA were obtained from all patients. First, screening for SMARCB1 alterations in the tumor specimens was done by direct sequencing, ddPCR and SNP array analysis. Then, analysis of germline DNA samples focusing on the genomic abnormalities detected in the paired tumors in each case was performed. RESULTS In eight of 16 cases (50%), genomic alterations observed in the tumor-derived DNA were also detected in the germline DNA. It is worth noting that three patients had germline mosaicism. Two of three patients had mosaic deletion, including SMARCB1 region, and the average copy number of the deleted region in the SMARCB1 gene in the germline was 1.60 and 1.76. For another patient, the fraction of SMARCB1 variants in normal cells was as low as 1.7%. CONCLUSIONS Approximately half the MRT cases in this study had SMARCB1 germline alterations. Considering the presence of low-frequency mosaicisms which conventional methods might overlook, inherited germline variants in predisposition genes are more important than previously assumed for the pathogenesis of pediatric cancers.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 662
Author(s):  
Nathaniel A. Parker ◽  
Ammar Al-Obaidi ◽  
Jeremy M. Deutsch

The SMARCB1/INI1 gene was first discovered in the mid-1990s, and since then it has been revealed that loss of function mutations in this gene result in aggressive rhabdoid tumors. Recently, the term “rhabdoid tumor” has become synonymous with decreased SMARCB1/INI1 expression. When genetic aberrations in the SMARCB1/INI1 gene occur, the result can cause complete loss of expression, decreased expression, and mosaic expression. Although SMARCB1/INI1-deficient tumors are predominantly sarcomas, this is a diverse group of tumors with mixed phenotypes, which can often make the diagnosis challenging. Prognosis for these aggressive tumors is often poor. Moreover, refractory and relapsing progressive disease is common. As a result, accurate and timely diagnosis is imperative. Despite the SMARCB1/INI1 gene itself and its implications in tumorigenesis being discovered over two decades ago, there is a paucity of rhabdoid tumor cases reported in the literature that detail SMARCB1/INI1 expression. Much work remains if we hope to provide additional therapeutic strategies for patients with aggressive SMARCB1/INI1-deficient tumors.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii392-iii393
Author(s):  
Giles W Robinson ◽  
Sebastian M Waszak ◽  
Brian L Gudenas ◽  
Kyle S Smith ◽  
Antoine Forget ◽  
...  

Abstract BACKGROUND Our previous analysis of established cancer predisposition genes in medulloblastoma (MB) identified pathogenic germline variants in ~5% of all patients. Here, we extended our analysis to include all protein-coding genes. METHODS Case-control analysis performed on 795 MB patients against >118,000 cancer-free children and adults was performed to identify an association between rare germline variants and MB. RESULTS Germline loss-of-function variants of Elongator Complex Protein 1 (ELP1; 9q31.3) were strongly associated with SHH subgroup (MBSHH). ELP1-associated-MBs accounted for ~15% (29/202) of pediatric MBSHH cases and were restricted to the SHHα subtype. ELP1-associated-MBs demonstrated biallelic inactivation of ELP1 due to somatic chromosome 9q loss and most tumors exhibited co-occurring somatic PTCH1 (9q22.32) alterations. Inheritance was verified by parent-offspring sequencing (n=3) and pedigree analysis identified two families with a history of pediatric MB. ELP1-associated-MBSHH were characterized by desmoplastic/nodular histology (76%; 13/17) and demonstrated a favorable clinical outcome when compared to TP53-associated-MBSHH (5-yr OS 92% vs 20%; p-value=1.3e-6) despite both belonging to the SHHα subtype. ELP1 is a subunit of the Elongator complex, that promotes efficient translational elongation through tRNA modifications at the wobble (U34) position. Biochemical, transcriptional, and proteomic analyses revealed ELP1-associated-MBs exhibit destabilization of the core Elongator complex, loss of tRNA wobble modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response. CONCLUSIONS We identified ELP1 as the most common MB predisposition gene, increasing the total genetic predisposition for pediatric MBSHH to 40%. These results mark MBSHH as an overwhelmingly genetically-predisposed disease and implicate disruption of protein homeostasis in MBSHH development.


2007 ◽  
Vol 156 (5) ◽  
pp. 521-529 ◽  
Author(s):  
Eva Al Taji ◽  
Heike Biebermann ◽  
Zdeňka Límanová ◽  
Olga Hníková ◽  
Jaroslav Zikmund ◽  
...  

Objective: Mutations in NKX2.1, NKX2.5, FOXE1 and PAX8 genes, encoding for transcription factors involved in the development of the thyroid gland, have been identified in a minority of patients with syndromic and non-syndromic congenital hypothyroidism (CH). Design: In a phenotype-selected cohort of 170 Czech paediatric and adolescent patients with non-goitre CH, including thyroid dysgenesis, or non-goitre early-onset hypothyroidism, PAX8, NKX2.1, NKX2.5, FOXE1 and HHEX genes were analysed for mutations. Methods: NKX2.1, NKX2.5, FOXE1 and HHEX genes were directly sequenced in patients with syndromic CH. PAX8 mutational screening was performed in all 170 patients by single-stranded conformation polymorphism, followed by direct sequencing of samples with abnormal findings. The R52P PAX8 mutation was functionally characterized by DNA binding studies. Results: We identified a novel PAX8 mutation R52P, dominantly inherited in a three-generation pedigree and leading to non-congenital, early-onset, non-goitre, non-autoimmune hypothyroidism with gradual postnatal regression of the thyroid size and function. The R52P PAX8 mutation results in the substitution of a highly conserved residue of the DNA-binding domain with a loss-of-function effect. Conclusions: The very low frequency of genetic defects in a population-based cohort of children affected by non-goitre congenital and early-onset hypothyroidism, even in a phenotype-focussed screening study, suggests the pathogenetic role of either non-classic genetic mechanisms or the involvement of genes unknown so far. Identification of a novel PAX8 mutation in a particular variant of non-congenital early-onset hypothyroidism indicates a key function of PAX8 in the postnatal growth and functional maintenance of the thyroid gland.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 662
Author(s):  
Nathaniel A. Parker ◽  
Ammar Al-Obaidi ◽  
Jeremy M. Deutsch

The SMARCB1/INI1 gene was first discovered in the mid-1990’s, and since then it has been revealed that loss of function mutations in this gene result in aggressive rhabdoid tumors. Recently, the term “rhabdoid tumor” has become synonymous with decreased SMARCB1/INI1 expression. When genetic aberrations in the SMARCB1/INI1 gene occur, the result can cause reduced, complete loss, and mosaic expression. Although SMARCB1/INI1-deficient tumors are predominantly sarcomas, this is a diverse group of tumors with mixed phenotypes, which can often make the diagnosis challenging. Prognosis for these aggressive tumors is often poor. Moreover, refractory and relapsing progressive disease is common. As a result, accurate and timely diagnosis is imperative. Despite the SMARCB1/INI1 gene itself and its implications in tumorigenesis being discovered over two decades ago, there is a paucity of rhabdoid tumor cases reported in the literature that detail SMARCB1/INI1 expression. Much work remains if we hope to provide additional therapeutic strategies for patients with aggressive SMARCB1/INI1-deficient tumors.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Li ◽  
Belle W. X. Lim ◽  
Ella R. Thompson ◽  
Simone McInerny ◽  
Magnus Zethoven ◽  
...  

AbstractBreast cancer (BC) has a significant heritable component but the genetic contribution remains unresolved in the majority of high-risk BC families. This study aims to investigate the monogenic causes underlying the familial aggregation of BC beyond BRCA1 and BRCA2, including the identification of new predisposing genes. A total of 11,511 non-BRCA familial BC cases and population-matched cancer-free female controls in the BEACCON study were investigated in two sequencing phases: 1303 candidate genes in up to 3892 cases and controls, followed by validation of 145 shortlisted genes in an additional 7619 subjects. The coding regions and exon–intron boundaries of all candidate genes and 14 previously proposed BC genes were sequenced using custom designed sequencing panels. Pedigree and pathology data were analysed to identify genotype-specific associations. The contribution of ATM, PALB2 and CHEK2 to BC predisposition was confirmed, but not RAD50 and NBN. An overall excess of loss-of-function (LoF) (OR 1.27, p = 9.05 × 10−9) and missense (OR 1.27, p = 3.96 × 10−73) variants was observed in the cases for the 145 candidate genes. Leading candidates harbored LoF variants with observed ORs of 2–4 and individually accounted for no more than 0.79% of the cases. New genes proposed by this study include NTHL1, WRN, PARP2, CTH and CDK9. The new candidate BC predisposition genes identified in BEACCON indicate that much of the remaining genetic causes of high-risk BC families are due to genes in which pathogenic variants are both very rare and convey only low to moderate risk.


2021 ◽  
pp. 109352662098649
Author(s):  
Tiffany G Baker ◽  
Michael J Lyons ◽  
Lee Leddy ◽  
David M Parham ◽  
Cynthia T Welsh

Rhabdoid tumor predisposition syndrome (RTPS) is defined as the presence of a SMARCB1 or SMARCA4 genetic aberration in a patient with malignant rhabdoid tumor. Patients with RTPS are more likely to present with synchronous or metachronous rhabdoid tumors. Based on the current state of rhabdoid tumor taxonomy, these diagnoses are based largely on patient demographics, anatomic location of disease, and immunohistochemistry, despite their nearly identical histologic and immunohistochemical profiles. Thus, the true distinction between such tumors remains a diagnostic challenge. Central nervous system atypical teratoid/rhabdoid tumor (AT/RT) is a rare, aggressive, primarily pediatric malignancy with variable histologic features and a well documented association with loss of SMARCB1 expression. Epithelioid sarcoma (ES) is a rare soft tissue tumor arising in patients of all ages and characteristically staining for both mesenchymal and epithelial immunohistochemical markers while usually demonstrating loss of SMARCB1 expression. To our knowledge we herein present the first documented case of a patient with RTPS who presented with metachronous AT/RT and ES.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii278-iii278
Author(s):  
Monika Graf ◽  
Marta Interlandi ◽  
Natalia Moreno ◽  
Dörthe Holdhof ◽  
Viktoria Melcher ◽  
...  

Abstract Rhabdoid tumors (RT) are rare but highly aggressive pediatric neoplasms. These tumors carry homozygous loss-of-function alterations of SMARCB1 in almost all cases with an otherwise low mutational load. RT arise at different intracranial (ATRT) as well as extracranial (MRT) anatomical sites. Three main molecular subgroups (ATRT-SHH, ATRT-TYR, ATRT-MYC) have been characterized for ATRT which are epigenetically and clinically diverse, while MRT show remarkable similarities with ATRT-MYC distinct from ATRT-SHH and ATRT-TYR. Even though there are hypotheses about various cells of origin among RT subgroups, precursor cells of RT have not yet been identified. Previous studies on the temporal control of SMARCB1 knockout in genetically engineered mouse models have unveiled a tight vulnerable time frame during embryogenesis with regard to the susceptibility of precursor cells to result in RT. In this study, we employed single-cell RNA sequencing to describe the intra- and intertumoral heterogeneity of murine ATRT-SHH and -MYC as well as extracranial MYC tumor cells. We defined subgroup-specific tumor markers for all RT classes but also observed a notable overlap of gene expression patterns in all MYC subgroups. By comparing these single-cell transcriptomes with available single-cell maps of early embryogenesis, we gained first insights into the cellular origin of RT. Finally, unsupervised clustering of published human RT methylation data and healthy control tissues confirmed the existence of different cells of origin for intracranial SHH tumors and MYC tumors independent of their anatomical localizations.


2003 ◽  
Vol 127 (9) ◽  
pp. e371-e373 ◽  
Author(s):  
Hong Qi Peng ◽  
Albert E. Stanek ◽  
Saul Teichberg ◽  
Barry Shepard ◽  
Ellen Kahn

Abstract Malignant rhabdoid tumor of the kidney is an uncommon renal tumor in children. The tumor has aggressive behavior and a poor prognosis and is extremely rare in adults; only 3 cases of renal rhabdoid tumors have been reported in adults. We describe here the microscopic, immunohistochemical, and electron microscopic characteristics of another case in a 38-year-old woman. This case reinforces the importance of recognizing this entity in the adult population.


Sign in / Sign up

Export Citation Format

Share Document