PATH-18. INTEGRATING TUMOR MICROENVIRONMENT WITH GENOMIC ABERRATIONS AND TUMOR CLASS IN ADULT GLIAL/GLIONEURONAL TUMORS BY DECONVOLUTION OF BULK METHYLATION DATA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi118-vi118
Author(s):  
Omkar Singh ◽  
Kenneth Aldape ◽  
Drew Pratt

Abstract It is increasingly recognized that the tumor microenvironment (TME) plays a critical role in the biology of cancer. To better understand the role of non-neoplastic immune cellular components in CNS tumors, we applied a deconvolution approach to bulk DNA methylation array data using methylCIBERSORT on 450k/850k methylation data from a set (n= 4057) of high- and low-grade glial and glioneuronal tumors. Using the cell type proportion data as input, we used dimension reduction (UMAP) to visualize sample-wise patterns of that emerge from the cell type proportion estimations. In glioblastomas (n= 2076) we identified distinct tumor clusters based on immune cell proportion and, interestingly, TME-based cluster groups demonstrated an association with specific genetic alterations such as EGFR amplification and/or CDKN2A/B homozygous deletion. Among 1178 IDH-mutant gliomas, clustering of tumors according to immune cell proportions led to 2 major subgroups, which largely aligned with 1p/19q co-deletion status. Among the non-codeleted tumors (IDH-mutant astrocytomas, N=734), clustering of immune cell decomposition revealed clusters which showed distinct proportions of a key genomic aberration in these tumors (CDKN2A/B loss). To investigate the possible role of monocyte proportion-relative gene expression and promoter methylation of the immune checkpoint PD-L1 and PD-L2 genes, we used a data subset (n=594) samples with matched gene expression profiles. We observed significantly high positive correlations (R=0.54 and 0.68, respectively) between monocyte proportion and expression of PD-L1 and PD-L2, in line with prior reports that monocytic cells can express these immune markers. Consistent with this, we found high negative correlations (R= -0.51 and -0.61, respectively) between monocytes and promoter methylation of PD-L1 and PD-L2, respectively. Overall, the findings highlight specific roles of the TME in biology and classification of adult CNS tumors, where specific immune cell admixtures correlate with tumor types and genomic aberrations.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Omkar Singh ◽  
Drew Pratt ◽  
Kenneth Aldape

AbstractIt is recognized that the tumor microenvironment (TME) plays a critical role in the biology of cancer. To better understand the role of immune cell components in CNS tumors, we applied a deconvolution approach to bulk DNA methylation array data in a large set of newly profiled samples (n = 741) as well as samples from external data sources (n = 3311) of methylation-defined glial and glioneuronal tumors. Using the cell-type proportion data as input, we used dimensionality reduction to visualize sample-wise patterns that emerge from the cell type proportion estimations. In IDH-wildtype glioblastomas (n = 2,072), we identified distinct tumor clusters based on immune cell proportion and demonstrated an association with oncogenic alterations such as EGFR amplification and CDKN2A/B homozygous deletion. We also investigated the immune cluster-specific distribution of four malignant cellular states (AC-like, OPC-like, MES-like and NPC-like) in the IDH-wildtype cohort. We identified two major immune-based subgroups of IDH-mutant gliomas, which largely aligned with 1p/19q co-deletion status. Non-codeleted gliomas showed distinct proportions of a key genomic aberration (CDKN2A/B loss) among immune cell-based groups. We also observed significant positive correlations between monocyte proportion and expression of PD-L1 and PD-L2 (R = 0.54 and 0.68, respectively). Overall, the findings highlight specific roles of the TME in biology and classification of CNS tumors, where specific immune cell admixtures correlate with tumor types and genomic alterations.


2011 ◽  
Vol 171 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Soeren Torge Mees ◽  
Wolf Arif Mardin ◽  
Christina Schleicher ◽  
Mario Colombo-Benkmann ◽  
Norbert Senninger ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Malte Simon ◽  
Sadaf S. Mughal ◽  
Peter Horak ◽  
Sebastian Uhrig ◽  
Jonas Buchloh ◽  
...  

Abstract Background Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments. Results To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort. We showed that leiomyosarcoma can be subclassified into three distinct methylation groups. More importantly, we identified a component associated with tumor-infiltrating leukocytes, which suggests varying degrees of immune cell infiltration in STS subtypes and an association with prognosis. We further investigated the genomic alterations that may influence tumor infiltration by leukocytes including RB1 loss in undifferentiated pleomorphic sarcomas and ELK3 amplification in dedifferentiated liposarcomas. Conclusions In summary, we have leveraged unsupervised methylation-based deconvolution to characterize the immune compartment and molecularly stratify subtypes in STS, which may benefit precision medicine in the future.


2019 ◽  
Author(s):  
Elmer A. Fernández ◽  
Yamil D. Mahmoud ◽  
Florencia Veigas ◽  
Darío Rocha ◽  
Mónica Balzarini ◽  
...  

AbstractRNA sequencing has proved to be an efficient high-throughput technique to robustly characterize the presence and quantity of RNA in tumor biopsies at a given time. Importantly, it can be used to computationally estimate the composition of the tumor immune infiltrate and to infer the immunological phenotypes of those cells. Given the significant impact of anti-cancer immunotherapies and the role of the associated immune tumor microenvironment (ITME) on its prognosis and therapy response, the estimation of the immune cell-type content in the tumor is crucial for designing effective strategies to understand and treat cancer. Current digital estimation of the ITME cell mixture content can be performed using different analytical tools. However, current methods tend to over-estimate the number of cell-types present in the sample, thus under-estimating true proportions, biasing the results. We developed MIXTURE, a noise-constrained recursive feature selection for support vector regression that overcomes such limitations. MIXTURE deconvolutes cell-type proportions of bulk tumor samples for both RNA microarray or RNA-Seq platforms from a leukocyte validated gene signature. We evaluated MIXTURE over simulated and benchmark data sets. It overcomes competitive methods in terms of accuracy on the true number of present cell-types and proportions estimates with increased robustness to estimation bias. It also shows superior robustness to collinearity problems. Finally, we investigated the human immune microenvironment of breast cancer, head and neck squamous cell carcinoma, and melanoma biopsies before and after anti-PD-1 immunotherapy treatment revealing associations to response to therapy which have not seen by previous methods.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15512-e15512
Author(s):  
David A. Drubin ◽  
Anne-Katrin Hess ◽  
Natalie L. Catlett ◽  
Alessandro Di Cara ◽  
Yvonne Wettergren ◽  
...  

e15512 Background: One of the target enzymes of 5-fluorouracil (5-FU)-based therapies is thymidylate synthase (TS) encoded by the TYMS gene. To enhance the effect of 5-FU, a folate analogue is often provided as part of the treatment. In this context, it has previously been shown in the ISO-CC-005 clinical study that TYMS gene expression can be predictive of response to 5-FU + folate analogue Arfolitixorin. Methods: To better understand the role of TYMS expression as a predictor of response to 5-FU + folate-based therapies and identify potential mechanisms and biomarkers of sensitivity/resistance, we leveraged data from the publicly available cancer genome atlas database (TCGA). We combined this information with a knowledgebase of causal biological relationships extracted from peer reviewed publications, to identify other relevant genes and candidate upstream controllers directly or indirectly related to TYMS expression and 5-FU + folate efficacy. Results: In TCGA subjects suffering from colorectal cancer (CRC) (stage IV tumors, treated with FOLFOX/FOLFIRI (n = 38)), lower TYMS expression was associated with a better overall survival (OS). This is consistent with what has been observed in the ISO-CC-005 study. Applying our causal biology knowledgebase to both genes identified as correlated to TYMS expression in TCGA CRC tumors and other published sets of genes associated with FOLFOX or FOLFIRI efficacy, we identified overlap with a MYCN signature. Notably MYC has been shown to directly activate TYMS expression. Thus, the MYC family is a compelling candidate upstream controller of these genes. We scored TCGA CRC tumors for inferred MYC activity, using this MYCN gene signature, and evaluated the inferred activity with respect to OS. In stage IV tumors, higher inferred MYC activity appears to be associated with worse OS. To further characterize this inferred MYC activity, we employed a transcriptomics-based cell deconvolution estimation of immune cell population proportions in the TCGA CRC cohort. We found inferred MYC activity inversely correlated with immune cell proportions overall, specifically strongest with those of pDCs and classical monocytes. Conclusions: MYC activation, a known transcriptional regulator of TYMS, has been identified as a potentially relevant common upstream controller of a group of genes involved in 5-FU + folate analogue efficacy. Here we have also observed a similar relationship to OS between TYMS and inferred MYC activity in Stage IV CRC. MYC family activity (and activated protein forms), genes of the MYCN signature, or the identified immune cell proportions are all potential biomarker candidates to explore as factors in 5-FU + folate analogue efficacy.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Julien Racle ◽  
Kaat de Jonge ◽  
Petra Baumgaertner ◽  
Daniel E Speiser ◽  
David Gfeller

Immune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type-specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research (http://epic.gfellerlab.org).


2002 ◽  
Vol 297 (4) ◽  
pp. 765-772 ◽  
Author(s):  
Éric Chicoine ◽  
Pierre-Olivier Estève ◽  
Olivier Robledo ◽  
Céline Van Themsche ◽  
Edouard F Potworowski ◽  
...  

Author(s):  
Kristiina Karihtala ◽  
Suvi-Katri Leivonen ◽  
Marja-Liisa Karjalainen-Lindsberg ◽  
Fong Chun Chan ◽  
Christian Steidl ◽  
...  

Emerging evidence indicates a major impact for the tumor microenvironment (TME) and immune escape in the pathogenesis and clinical course of classical Hodgkin lymphoma (cHL). We used gene expression profiling (n=88), CIBERSORT, and multiplex immunohistochemistry (n=131) to characterize the immunoprofile of cHL TME, and correlated the findings with survival. Gene expression analysis divided tumors into subgroups with T cell-inflamed and non-inflamed TME. Several macrophage-related genes were upregulated in samples with the non-T cell-inflamed TME, and based on the immune cell proportions, the samples clustered according to the content of T cells and macrophages. A cluster with high proportions of checkpoint protein (PD-1, PD-L1, IDO-1, LAG-3, and TIM-3) positive immune cells translated to unfavorable overall survival (OS) (5-year OS 76% vs. 96%, P=0.010), and remained as an independent prognostic factor for OS in multivariable analysis (HR 4.34, 95% CI 1.05-17.91, P=0.043). cHLs with high proportions of checkpoint proteins overexpressed genes coding for cytolytic factors, proposing paradoxically that they were immunologically active. This checkpoint molecule gene signature translated to inferior survival in a validation cohort of 290 diagnostic cHL samples (P<0.001) and in an expansion cohort of 84 cHL relapse samples (P=0.048). Our findings demonstrate the impact of T cell- and macrophage-mediated checkpoint system on the survival of patients with cHL.


2020 ◽  
Author(s):  
James W. Opzoomer ◽  
Joanne E. Anstee ◽  
Isaac Dean ◽  
Emily J. Hill ◽  
Ihssane Bouybayoune ◽  
...  

AbstractTumor associated macrophages (TAMs) are a highly plastic stromal cell type which are exquisitely polarized by the tumor microenvironment to support cancer progression1, 2. Single-cell RNA-sequencing (scRNA-seq) of TAMs from a spontaneous murine model of mammary adenocarcinoma (MMTV-PyMT) identified three distinct polarization trajectories for these cells within the tumor microenvironment. We reveal sub-divisions within the pro-tumoral TAM population with one subset expressing Lyve-1 and residing in a spatial niche proximal to blood vasculature within the tumor. We demonstrate that selective depletion of the Lyve-1+ TAM population significantly slows tumor growth because of a non-redundant role of these cells in orchestrating the platelet derived growth factor-CC (PDGF-CC)-dependent expansion of tumor-resident pericytes which underpins vasculature growth and development. This study uncovers that local pericyte expansion in cancer is not an autonomous event but tightly regulated by the perivascular Lyve-1+ TAM population, which ultimately govern the success of angiogenesis in cancer.


Sign in / Sign up

Export Citation Format

Share Document