MYC as a candidate upstream controller involved in TYMS gene expression and 5-FU/folate treatment efficacy in colorectal cancer.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15512-e15512
Author(s):  
David A. Drubin ◽  
Anne-Katrin Hess ◽  
Natalie L. Catlett ◽  
Alessandro Di Cara ◽  
Yvonne Wettergren ◽  
...  

e15512 Background: One of the target enzymes of 5-fluorouracil (5-FU)-based therapies is thymidylate synthase (TS) encoded by the TYMS gene. To enhance the effect of 5-FU, a folate analogue is often provided as part of the treatment. In this context, it has previously been shown in the ISO-CC-005 clinical study that TYMS gene expression can be predictive of response to 5-FU + folate analogue Arfolitixorin. Methods: To better understand the role of TYMS expression as a predictor of response to 5-FU + folate-based therapies and identify potential mechanisms and biomarkers of sensitivity/resistance, we leveraged data from the publicly available cancer genome atlas database (TCGA). We combined this information with a knowledgebase of causal biological relationships extracted from peer reviewed publications, to identify other relevant genes and candidate upstream controllers directly or indirectly related to TYMS expression and 5-FU + folate efficacy. Results: In TCGA subjects suffering from colorectal cancer (CRC) (stage IV tumors, treated with FOLFOX/FOLFIRI (n = 38)), lower TYMS expression was associated with a better overall survival (OS). This is consistent with what has been observed in the ISO-CC-005 study. Applying our causal biology knowledgebase to both genes identified as correlated to TYMS expression in TCGA CRC tumors and other published sets of genes associated with FOLFOX or FOLFIRI efficacy, we identified overlap with a MYCN signature. Notably MYC has been shown to directly activate TYMS expression. Thus, the MYC family is a compelling candidate upstream controller of these genes. We scored TCGA CRC tumors for inferred MYC activity, using this MYCN gene signature, and evaluated the inferred activity with respect to OS. In stage IV tumors, higher inferred MYC activity appears to be associated with worse OS. To further characterize this inferred MYC activity, we employed a transcriptomics-based cell deconvolution estimation of immune cell population proportions in the TCGA CRC cohort. We found inferred MYC activity inversely correlated with immune cell proportions overall, specifically strongest with those of pDCs and classical monocytes. Conclusions: MYC activation, a known transcriptional regulator of TYMS, has been identified as a potentially relevant common upstream controller of a group of genes involved in 5-FU + folate analogue efficacy. Here we have also observed a similar relationship to OS between TYMS and inferred MYC activity in Stage IV CRC. MYC family activity (and activated protein forms), genes of the MYCN signature, or the identified immune cell proportions are all potential biomarker candidates to explore as factors in 5-FU + folate analogue efficacy.

2018 ◽  
Vol 12 ◽  
pp. 117955491877506 ◽  
Author(s):  
Maher Jedi ◽  
Graeme P Young ◽  
Susanne K Pedersen ◽  
Erin L Symonds

The genes BCAT1 and IKZF1 are hypermethylated in colorectal cancer (CRC), but little is known about how this relates to gene expression. This study assessed the relationship between methylation and gene expression of BCAT1 and IKZF1 in CRC and adjacent non-neoplastic tissues. The tissues were obtained at surgery from 36 patients diagnosed with different stages of CRC (stage I n = 8, stage II n = 13, stage III n = 10, stage IV n = 5). Methylated BCAT1 and IKZF1 were detected in 92% and 72% CRC tissues, respectively, with levels independent of stage ( P > .05). In contrast, only 31% and 3% of non-neoplastic tissues were methylated for BCAT1 and IKZF1, respectively ( P < .001). The IKZF1 messenger RNA (mRNA) expression was significantly lower in the cancer tissues compared with that of non-neoplastic tissues, whereas the BCAT1 mRNA levels were similar. The latter may be due to the BCAT1 polymerase chain reaction assay detecting more than 1 mRNA transcript. Further studies are warranted to establish the role of the epigenetic silencing of IKZF1 in colorectal oncogenesis.


2020 ◽  
Vol 14 (12) ◽  
pp. 1127-1137
Author(s):  
Tong-Tong Zhang ◽  
Yi-Qing Zhu ◽  
Hong-Qing Cai ◽  
Jun-Wen Zheng ◽  
Jia-Jie Hao ◽  
...  

Aim: This study aimed to develop an effective risk predictor for patients with stage II and III colorectal cancer (CRC). Materials & methods: The prognostic value of p-mTOR (Ser2448) levels was analyzed using Kaplan–Meier survival analysis and Cox regression analysis. Results: The levels of p-mTOR were increased in CRC specimens and significantly correlated with poor prognosis in patients with stage II and III CRC. Notably, the p-mTOR level was an independent poor prognostic factor for disease-free survival and overall survival in stage II CRC. Conclusion: Aberrant mTOR activation was significantly associated with the risk of recurrence or death in patients with stage II and III CRC, thus this activated proteins that may serve as a potential biomarker for high-risk CRC.


2021 ◽  
Vol 14 ◽  
Author(s):  
Lara J. Bou Malhab ◽  
Wael M. Abdel-Rahman

: The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.


2020 ◽  
Author(s):  
Qiang Liu ◽  
Yihang Qi ◽  
Jie Zhai ◽  
Xiangyi Kong ◽  
Xiangyu Wang ◽  
...  

Abstract Background Despite the promising impact of cancer immunotherapy targeting CTLA4 and PD1/PDL1, a large number of cancer patients fail to respond. LAG3 (Lymphocyte Activating 3), also named CD233, is a protein Coding gene served as alternative inhibitory receptors to be targeted in the clinic. The impact of LAG3 on immune cell populations and co-regulation of immune response in breast cancer remained largely unknown. Methods To characterize the role of LAG3 in breast cancer, we investigated transcriptome data and associated clinical information derived from a total of 2994 breast cancer patients. Results We observed that LAG3 was closely correlated with major molecular and clinical characteristics, and was more likely to be enriched in higher malignant subtype, suggesting LAG3 was a potential biomarker of triple-negative breast cancer. Furthermore, we estimated the landscape of relationship between LAG3 and ten types of cell populations in breast cancer. Gene ontology analysis revealed LAG3 were strongly correlated with immune response and inflammatory activities. We investigated the correlation pattern between LAG3 and immune modulators in pan-cancer, especially the synergistic role of LAG3 with other immune checkpoints members in breast cancer. Conclusions LAG3 expression was closely related to malignancy of breast cancer and might serve as a potential biomarker; LAG3 might plays an important role in regulating tumor immune microenvironment, not only T cells, but also other immune cells. More importantly, LAG3 might synergize with CTLA4, PD1/ PDL1 and other immune checkpoints, thereby lending more evidences to combination cancer immunotherapy by targeting LAG3, PD1/PDL1, and CTLA4 together.


2013 ◽  
Vol 18 (3) ◽  
pp. 592-598 ◽  
Author(s):  
Walter Y Tsang ◽  
Argyrios Ziogas ◽  
Bruce S. Lin ◽  
Tara E. Seery ◽  
William Karnes ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3538-3538
Author(s):  
Ling Zhang ◽  
Jianping Song ◽  
Yiting Wang ◽  
Yaoxu Chen

3538 Background: Lysine Methyltransferase 2C (KMT2C), a member of the myeloid/lymphoid or mixed-lineage leukemia (MLL) family, possesses histone methylation activity and is involved in transcriptional co-activation. Present study has shown that KMT2C is positive correlated with better efficacy of Immune checkpoint inhibitor (ICI) in NSCLC. However, the role of KMT2C in treatment of ICI on colorectal cancer (CRC) is still unknown. Methods: NGS (Next Generation Sequencing) was performed on 1628 CRC patients. TMB of these patients were analyzed. A public accessible cohort (Samstein2018) with data from 130 CRC patients were used to investigate the correlation between KMT2C mutation and efficacy of ICI. WES and survival data of TCGA database (1099 CRC) was used to analyze prognostic effect of KMT2C mutation. Furthermore, CIBERSORT was used to analyze the tumor-infiltrating immune cells present in COAD(colon adenocarcinoma, 404 patients)from TCGA database. Results: Among 1628 CRC patient, 230(14.1%) had KMT2C mutation. TMB was positive correlated with KMT2C mutation (Mut vs. WT, 30.75 vs. 7.26 mut/Mb, p < 0.0001). The Samstein2018 cohort showed that KMT2C mutations (15.4%, 20/130) were significantly associated with better OS (Mut vs. WT, 11.5 vs. 7.5 month, HR = 0.29; 95% CI, 0.1-0.81; P = 0.012), and a higher TMB was also observed in KMT2C-Mut group (p = 1.98e-08). In TCGA, no association between KMT2C mutation and OS was observed (P = 0.23), suggesting that was not prognostic factor. Moreover, we analyzed the relationship between KMT2C mutation and immune cell infiltration through CRC TCGA database. The results showed, in COAD, KMT2C mutation was positively correlated with the abundance of CD8+ T cells (P = 0.0014), B cells (P = 0.014), M1 macrophages (P = 0.015), neutrophil (P = 0.0019) and NK cells (P = 0.043), and negatively correlated with Treg cells (p = 0.0063). Conclusions: KMT2C has an impact on the immune microenvironment and may be used as a potential positive predictor for treatment of ICI on CRC patients. The role of KMT2C in immunotherapy warrant further studies.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1379
Author(s):  
Ippokratis Messaritakis ◽  
Asimina Koulouridi ◽  
Maria Sfakianaki ◽  
Konstantinos Vogiatzoglou ◽  
Nikolaos Gouvas ◽  
...  

Vitamin D deficiency has been associated with increased colorectal cancer (CRC) incidence risk and mortality. Vitamin D mediates its action through the binding of the vitamin D receptor (VDR), and polymorphisms of the VDR might explain these inverse associations. The aim of the study was the investigation of the relevance of rs731236; Thermus aquaticus I (TaqI), rs7975232; Acetobacter pasteurianus sub. pasteurianus I (ApaI), rs2228570; Flavobacterium okeanokoites I (FokI) and rs1544410, Bacillus stearothermophilus I (BsmI) polymorphisms of the VDR gene to colorectal carcinogenesis (CRC) and progression. Peripheral blood was obtained from 397 patients with early operable stage II/III (n = 202) and stage IV (n = 195) CRC. Moreover, samples from 100 healthy donors and 40 patients with adenomatous polyps were also included as control groups. Genotyping in the samples from patients and controls was performed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). A significant association was revealed between all four polymorphisms and cancer. Individuals with homozygous mutant (tt, aa, ff or bb) genotypes were more susceptible to the disease (p < 0.001). All of the mutant genotypes detected were also significantly associated with stage IV (p < 0.001), leading to significantly decreased survival (p < 0.001). Moreover, all four polymorphisms were significantly associated with KRAS (Kirsten ras oncogene) mutations and Toll-like receptor (TLR2, TLR4 and TLR9) genetic variants. In multivariate analysis, tt, aa and ff genotypes emerged as independent factors associated with decreased overall survival (OS) (p = 0.001, p < 0.001 and p = 0.001, respectively). The detection of higher frequencies of the VDR polymorphisms in CRC patients highlights the role of these polymorphisms in cancer development and progression.


2020 ◽  
Vol 18 (05) ◽  
pp. 2050030
Author(s):  
Dongmei Ai ◽  
Gang Liu ◽  
Xiaoxin Li ◽  
Yuduo Wang ◽  
Man Guo

In addition to tumor cells, a large number of immune cells are found in the tumor microenvironment (TME) of cancer patients. Tumor-infiltrating immune cells play an important role in tumor progression and patient outcome. We improved the relative proportion estimation algorithm of immune cells based on RNA-seq gene expression profiling and solved the multiple linear regression model by support vector regression ([Formula: see text]-SVR). These steps resulted in increased robustness of the algorithm and more accurate calculation of the relative proportion of different immune cells in cancer tissues. This method was applied to the analysis of infiltrating immune cells based on 41 pairs of colorectal cancer tissues and normal solid tissues. Specifically, we compared the relative fractions of six types of immune cells in colorectal cancer tissues to those found in normal solid tissue samples. We found that tumor tissues contained a higher proportion of CD8 T cells and neutrophils, while B cells and monocytes were relatively low. Our pipeline for calculating immune cell proportion using gene expression profile data can be freely accessed from GitHub at https://github.com/gutmicrobes/EICS.git.


Sign in / Sign up

Export Citation Format

Share Document