scholarly journals Cystathionine-γ-lyase drives antioxidant defense in cysteine-restricted IDH1 mutant astrocytomas

Author(s):  
Andrés Cano-Galiano ◽  
Anais Oudin ◽  
Fred Fack ◽  
Maria-Francesca Allega ◽  
David Sumpton ◽  
...  

Abstract Background Mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) define glioma subtypes and are considered primary events in gliomagenesis, impacting tumor epigenetics and metabolism. IDH enzyme activity is crucial for the generation of reducing potential in normal cells, yet the impact of the mutation on the cellular antioxidant system in glioma is not understood. The aim of this study was to determine how glutathione (GSH), the main antioxidant in the brain, is maintained in IDH1 mutant gliomas, despite an altered NADPH/NADP balance. Methods Proteomics, metabolomics, metabolic tracer studies, genetic silencing and drug targeting approaches in vitro and in vivo were applied. Analyses were done in clinical specimen of different glioma subtypes, in glioma patient-derived cell lines carrying the endogenous IDH1 mutation and corresponding orthotopic xenografts in mice. Results We find that cystathionine-γ-lyase (CSE), the enzyme responsible for cysteine production upstream of GSH biosynthesis, is specifically upregulated in IDH1 mutant astrocytomas. CSE inhibition sensitized these cells to cysteine depletion, an effect not observed in IDH1 wild-type gliomas. This correlated with an increase in reactive oxygen species and reduced GSH synthesis. Propargylglycine (PAG), a brain-penetrant drug specifically targeting CSE, led to delayed tumor growth in mice. Conclusions We show that IDH1 mutant astrocytic gliomas critically rely on NADPH-independent de novo GSH synthesis via CSE to maintain the antioxidant defense, which highlights a novel metabolic vulnerability that may be therapeutically exploited.

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Andrés Cano-Galiano ◽  
Anais Oudin ◽  
Fred Fack ◽  
Maria-Francesca Allega ◽  
David Sumpton ◽  
...  

Abstract Mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) define glioma subtypes and are considered primary events in gliomagenesis, impacting tumor epigenetics and metabolism. IDH enzymes are crucial for the generation of reducing potential, yet the impact of the mutation on the cellular antioxidant system is not understood. Here, we investigate how glutathione (GSH) levels are maintained in IDH1 mutant gliomas, despite an altered NADPH/NADP balance. We find that IDH1 mutant astrocytomas specifically upregulate cystathionine γ-lyase (CSE), the enzyme responsible for cysteine production upstream of GSH biosynthesis. Genetic and chemical interference with CSE in patient-derived glioma cells carrying the endogenous IDH1 mutation, sensitized tumor cells to cysteine depletion, an effect not observed in IDH1 wild-type gliomas. This correlated with reduced GSH synthesis as shown by in vitro and in vivo serine tracing and led to delayed tumor growth in mice. Thus we show that IDH1 mutant astrocytic gliomas critically rely on NADPH-independent de novo GSH synthesis to maintain the antioxidant defense, which uncovers a novel metabolic vulnerability in this dismal disease.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Raffaella Spina ◽  
Dillon M Voss ◽  
Xiaohua Yang ◽  
Jason W Sohn ◽  
Robert Vinkler ◽  
...  

Abstract Background Necrotic foci with surrounding hypoxic cellular pseudopalisades and microvascular hyperplasia are histological features found in glioblastoma (GBM). We have previously shown that monocarboxylate transporter 4 (MCT4) is highly expressed in necrotic/hypoxic regions in GBM and that increased levels of MCT4 are associated with worse clinical outcomes. Methods A combined transcriptomics and metabolomics analysis was performed to study the effects of MCT4 depletion in hypoxic GBM neurospheres. Stable and inducible MCT4-depletion systems were used to evaluate the effects of and underlining mechanisms associated with MCT4 depletion in vitro and in vivo, alone and in combination with radiation. Results This study establishes that conditional depletion of MCT4 profoundly impairs self-renewal and reduces the frequency and tumorigenicity of aggressive, therapy-resistant, glioblastoma stem cells. Mechanistically, we observed that MCT4 depletion induces anaplerotic glutaminolysis and abrogates de novo pyrimidine biosynthesis. The latter results in a dramatic increase in DNA damage and apoptotic cell death, phenotypes that were readily rescued by pyrimidine nucleosides supplementation. Consequently, we found that MCT4 depletion promoted a significant prolongation of survival of animals bearing established orthotopic xenografts, an effect that was extended by adjuvant treatment with focused radiation. Conclusions Our findings establish a novel role for MCT4 as a critical regulator of cellular deoxyribonucleotide levels and provide a new therapeutic direction related to MCT4 depletion in GBM.


Biosensors ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Mioara Larion ◽  
Tyrone Dowdy ◽  
Victor Ruiz-Rodado ◽  
Matthew Meyer ◽  
Hua Song ◽  
...  

Isocitrate dehydrogenase 1 (IDH1) mutations in gliomas, fibrosarcoma, and other cancers leads to a novel metabolite, D-2-hydroxyglutarate, which is proposed to cause tumorigenesis. The production of this metabolite also causes vulnerabilities in cellular metabolism, such as lowering NADPH levels. To exploit this vulnerability, we treated glioma and fibrosarcoma cells that harbor an IDH1 mutation with an inhibitor of nicotinamide adenine dinucleotide (NAD+) salvage pathway, FK866, and observed decreased viability in these cells. To understand the mechanism of action by which the inhibitor FK866 works, we used Raman imaging microscopy and identified that proteins and lipids are decreased upon treatment with the drug. Raman imaging showed a different distribution of lipids throughout the cell in the presence of the drug compared with the untreated cells. We employed nuclear magnetic resonance NMR spectroscopy and mass spectrometry to identify the classes of lipids altered. Our combined analyses point to a decrease in cell division due to loss of lipid content that contributes to membrane formation in the in vitro setting. However, the FK866 drug did not have the same potency in vivo. The use of Raman imaging microscopy indicated an opposite trend of lipid distribution in the tissue collected from treated versus untreated mice when compared with the cells. These results demonstrate the role of Raman imaging microscopy to identify and quantify metabolic changes in cancer cells and tissue.


2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeqi Nian ◽  
Zhilei Xiong ◽  
Panpan Zhan ◽  
Zhen Wang ◽  
Yang Xu ◽  
...  

Donor-specific antibodies (DSAs) play a key role in chronic kidney allograft injury. Follicular T helper (Tfh) cells trigger the humoral alloimmune response and promote DSA generation, while T-follicular regulatory (Tfr) cells inhibit antibody production by suppressing Tfh and B cells. Interleukin (IL)-21 exerts a distinct effect on Tfh and Tfr. Here, we studied whether blocking IL-21R with anti-IL-21R monoclonal antibody (αIL-21R) changes the Tfh/Tfr balance and inhibits DSA generation. First, we investigated the impact of αIL-21R on CD4+ T cell proliferation and apoptosis. The results showed that αIL-21R did not have cytotoxic effects on CD4+ T cells. Next, we examined Tfh and regulatory T cells (Tregs) in an in vitro conditioned culture model. Naïve CD4+ T cells were isolated from 3-month-old C57BL/6 mice and cultured in Tfh differentiation inducing conditions in presence of αIL-21R or isotype IgG and differentiation was evaluated by CXCR5 expression, a key Tfh marker. αIL-21R significantly inhibited Tfh differentiation. In contrast, under Treg differentiation conditions, FOXP3 expression was inhibited by IL-21. Notably, αIL-21R rescued IL-21-inhibited Treg differentiation. For in vivo investigation, a fully mismatched skin transplantation model was utilized to trigger the humoral alloimmune response. Consistently, flow cytometry revealed a reduced Tfh/Tfr ratio in recipients treated with αIL-21R. Germinal center response was evaluated by flow cytometry and lectin histochemistry. We observed that αIL-21R significantly inhibited germinal center reaction. Most importantly, DSA levels after transplantation were significantly inhibited by αIL-21R at different time points. In summary, our results demonstrate that αIL-21R shifts the Tfh/Tfr balance toward DSA inhibition. Therefore, αIL-21R may be a useful therapeutic agent to prevent chronic antibody mediated rejection after organ transplantation.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Xuhui Bao ◽  
...  

Abstract Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes. While it is well established that Myc functions by binding to its target genes to regulate their transcription, the distribution of the transcriptional output across human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructures, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly in genes of involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc’s expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on the aforementioned infrastructure genes, which was accompanied by the abrogation of MB cell’s proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, gain new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in MB cells empowered by a high level of Myc oncoprotein.


Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1122-1134 ◽  
Author(s):  
Aliesha Griffin ◽  
Silvia Parajes ◽  
Meltem Weger ◽  
Andreas Zaucker ◽  
Angela E. Taylor ◽  
...  

Abstract Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 440-440
Author(s):  
Daniel Thomas ◽  
Yusuke Nakauchi ◽  
Manhong Wu ◽  
Ming Zheng ◽  
Subarna Sinha ◽  
...  

Abstract Introduction: Mutations in IDH1 and IDH2 are recurrent in AML and several other cancers, resulting in the aberrant production of the onco-metabolite, R-2-hydroxyglutarate (2-HG), as well as an inability of mutant IDH1 to convert cytoplasmic alpha-ketoglutarate to isocitrate via reductive carboxylation. Currently, inhibitors of the neomorphic enzymes that abrogate the production of 2-HG, such as AG-120, are FDA-approved, but are not curative. Using a novel computational method (MiSL), we identified acetyl CoA carboxylase (ACACA) as a potential druggable target specifically in IDH1-mutated AML. ACACA regulates the de novo synthesis of lipid precursors by converting acetyl CoA to malonyl CoA building blocks. We hypothesize that IDH1 mutant AML exhibits a defect in reductive carboxylation and de novo fatty acid synthesis conferring preferential susceptibility to ACACA inhibition. Here, we investigate this hypothesis by comprehensively quantifying the metabolic landscape, including non-polar lipid metabolites, conferred by IDH1 R132H mutation compared to IDH2 mutation in isogenic cell lines and primary samples. Moreover, we investigate the in vitro and in vivo effects of targeting de novo lipid synthesis on IDH1 and IDH2 mutant AML. Methods: Comprehensive metabolomic profiling of primary FACS-purified AML blasts was performed using an in-house protocol optimised for extraction of non-polar lipid metabolites from less than 1 million primary cells. CD33+CD45+ leukemic blasts were profiled from 17 patient samples with IDH1 mutation (n=6), IDH2 mutation (n=5), or IDH1/2 wildtype (n=6) after culturing in serum-free media. 6 independent cord-blood CD34+ cells were profiled as a negative control. For validation of IDH1-specific effects, isogenic THP-1 cells transduced with doxycycline-inducible wildtype and R132H mutant IDH1 or R140Q mutant and wildtype IDH2 were profiled. Molecules were identified according to their molecular weight and retention time using Mass Hunter software (Agilent) and the Human Metabolome Database. For in vivo studies, primary AML samples were engrafted in NSG mice that were subjected to dietary modification with low lipid diet and/or treatment with selective inhibitors of ACACA and mutant IDH1. Results: Principle component analysis of metabolite abundance of 1400 unique compounds revealed striking differences between IDH1 and IDH2 mutant AML. Both IDH1 and IDH2 mutant samples produced high levels of 2-HG compared to wildtype AML and CD34+ cells (50 fold increase, P=4.5E-05). A major perturbation in multiple phospholipid fatty acid species was conferred by IDH1 R132H, but not by IDH2 mutation. The same pattern was observed in cell lines with 49 lipid species decreased in the presence of mutant IDH1 compared to only 2 perturbed with mutant IDH2. Direct comparison of IDH1 vs IDH2 mutant primary samples revealed 54 lipid metabolites significantly down-regulated in IDH1 mutant blasts (adjusted P value <0.05). To investigate the effects of targeting de novo lipid synthesis on IDH1 mutant AML in vivo, we engrafted primary IDH1 mutant AML and tested growth with lipid-free compared to normal diet. At 12 weeks, IDH1 mutant AML showed reduced growth in the bone marrow of mice on lipid-free diet (SU389 11% vs 40%, n=10 mice, P=0.03 and SU372 21% vs 34%, n=10, P=0.02 Mann-Whitney U). IDH1 mutant AML was susceptible to ACACA inhibition with shRNA, CRISPR targeting, or selective nanomolar inhibitors. Knockdown of ACACA with independent shRNAs caused a defect in cell growth in the presence of IDH1 R132H, but not in its absence or with scrambled shRNA (p=0.009, shRNA #1 vs. scrambled; p=0.01, shRNA #2 vs. scrambled) in vitro and in xenografts. Primary IDH1 R132 mutated AML blasts were selectively sensitive to ACACA inhibitor treatment compared to IDH1 wildtype normal karyotype blasts (IC50 0.6 uM vs 6 uM, p=0.009). Notably, IDH1-mutant AML blasts pre-treated with 10mM AG-120 remained susceptible to ACACA inhibition, identifying a 2-HG independent vulnerability. Similar findings were observed in a solid tumor IDH1 mutant sarcoma model in vivo. Conclusion : These results support our hypothesis that IDH1 mutant AML exhibits a defect in de novo fatty acid synthesis conferring preferential susceptibility to ACACA inhibition, and suggests that pharmacologic inhibitors of ACACA may complement IDH1 mutation-specific inhibitors in the clinic. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii218-ii218
Author(s):  
Sanjay Singh ◽  
Maxime Munyeshyaka ◽  
Joy Gumin ◽  
Jing Yang ◽  
Daniel Ledbetter ◽  
...  

Abstract Glioblastomas (GBM) exhibit high proliferative index, areas of necrosis, high vascularization, and are highly invasive to normal brain tissues. The most common and lethal form of GBMs are primary GBMs, with no prior clinical history. Whereas, secondary GBMs arise from low-grade gliomas and are associated with IDH1 mutation. Pre-clinical studies of GBM largely depend on patient-derived GBM stem-like cells (GSCs) in vitro and in vivo as orthotopic xenografts. Cerebral organoids (COs) derived from induced pluripotent stem cells can serve as allogenic in vitro model systems to study interactions between normal brain and GSCs. COs have been shown to harbor neural stem cells and their differentiated progenies as well as microglia within distinct niches. Here, we co-cultured 45 day-old COs and MDA-GSCs lines representing mesenchymal sub-group (M-MDA-GSC), classical sub-group (C-MDA-GSC), and IDH1 mutant (IDH1R132H-MDA-GSC). MDA-GSCs stably express fluorescent proteins and is used to track GSCs within COs. These GSC bearing COs were fixed, embedded, sectioned, immuno-stained, and imaged by confocal microscope. There was a positive correlation between GSC numbers in allografted niche and invasion into COs as measured from the edge of organoid, M-MDA-GSC (R2=0.99; 0.89μm/cell), C-MDA-GSC (R2=0.92; 0.66μm/cell), and IDH1R132H-MDA-GSC (R2=0.89; 0.5μm/cell). Additionally, M-MDA-GSCs had significantly high percentage of Ki67+ve invasive cells (24%) in comparison to C-MDA-GSCs (5.1%; p=0.0057). As a measure of interaction of MDA-GSC with normal cells, we assessed proximity of IBA1+ve microglia in GSC niche within organoids and show that M-MDA-GSC and IDH1R132H-MDA-GSC highly co-localized with IBA1+ve microglia on day12 of co-culture. In conclusion, our cerebral organoid-based allograft study shows that mesenchymal GSCs (M-MDA-GSC) are most invasive whereas IDH1 mutant GSCs (IDH1R132H-MDA-GSC) are least invasive. C-MDA-GSCs are least proliferative while invading into normal COs. Uniqueness of CO based allograft system is highlighted by observed similarity between M-MDA-GSC and IDH1R132H-MDA-GSC for their potential to attract IBA1+ve microglia.


2018 ◽  
Author(s):  
Leslie Y. Beh ◽  
Galia T. Debelouchina ◽  
Derek M. Clay ◽  
Robert E. Thompson ◽  
Kelsi A. Lindblad ◽  
...  

SummaryDNA N6-adenine methylation (6mA) has recently been reported in diverse eukaryotes, spanning unicellular organisms to metazoans. Yet the functional significance of 6mA remains elusive due to its low abundance, difficulty of manipulation within native DNA, and lack of understanding of eukaryotic 6mA writers. Here, we report a novel DNA 6mA methyltransferase in ciliates, termed MTA1. The enzyme contains an MT-A70 domain but is phylogenetically distinct from all known RNA and DNA methyltransferases. Disruption of MTA1in vivoleads to the genome-wide loss of 6mA in asexually growing cells and abolishment of the consensus ApT dimethylated motif. Genes exhibit subtle changes in chromatin organization or RNA expression upon loss of 6mA, depending on their starting methylation level. Mutants fail to complete the sexual cycle, which normally coincides with a peak of MTA1 expression. Thus, MTA1 functions in a developmental stage-specific manner. We determine the impact of 6mA on chromatin organizationin vitroby reconstructing complete, full-length ciliate chromosomes harboring 6mA in native or ectopic positions. Using these synthetic chromosomes, we show that 6mA directly disfavors nucleosomesin vitroin a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a novel MT-A70 protein necessary for eukaryotic 6mA methylation and defines the impact of 6mA on chromatin organization using epigenetically defined synthetic chromosomes.HighlightsThe MT-A70 protein MTA1 mediates DNA N6-adenine methylation inOxytrichaMTA1 mutants exhibit subtle changes in nucleosome organization and transcriptionin vivo6mA directly disfavors nucleosome occupancy in natural and synthetic chromosomesin vitroDe novosynthesis of complete, epigenetically definedOxytrichachromosomes


Sign in / Sign up

Export Citation Format

Share Document