scholarly journals IL2 Neural stem cell regulation and brain development

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Yukiko Gotoh

Abstract Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone (SVZ) are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. We have previously shown that slow cell cycle can cause the establishment of adult NSCs at the SVZ, although the underlying mechanism remains unknown. We found that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate. I will also discuss the heterogeneity of slowly dividing embryonic NPCs and the lineage relationship between adult NSCs and ependymal cells, which together form the niche for adult neurogenesis at the SVZ.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yujin Harada ◽  
Mayumi Yamada ◽  
Itaru Imayoshi ◽  
Ryoichiro Kageyama ◽  
Yutaka Suzuki ◽  
...  

AbstractQuiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. Yet, how slow cell cycle can cause the establishment of adult NSCs remains largely unknown. Here, we demonstrate that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 67-86
Author(s):  
T. A. Dettlaff

In both the ectodermal and the chordamesodermal regions of Anuran embryos, the outer layer of cells possesses epithelial properties and has the same restricted morphogenetic potencies. It is thus interchangeable between the regions, capable of epiboly and, when underlain by notochord material, of the formation of bottle-shaped cells as at the blastoporal groove, and invagination. When taken from the chordamesoderm region, this outer layer has no inducing effect on the ectoderm of the early gastrula. In normal development the outer layer of the neural plate takes an active part in forming the neural tube cavity. It gives rise to the neuroepithelial roof of the diencephalon and medulla oblongata and, when underlain by neuroblasts that develop from the inner cell layers, to ependymal cells of the brain wall. The outer layer of the notochord material is included in the epithelial layer underlying the roof of the gastrocoel - the hypochordal plate. The inner layers of these regions consist of loosely arranged cells and normally have no epithelial properties although, when taken from the ectoderm region, they may acquire such properties upon long-term contact with the environment. However they have wide morphogenetic potencies; the differences in these potencies between cells taken from the various presumptive regions being less than the differences between outer and inner cell layers in each region. Maps are provided which show the arrangement of presumptive rudiments in the ectoderm and chordamesoderm on sagittal sections through Bombina bombina embryos in early and late gastrulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3563-3563 ◽  
Author(s):  
Brahmananda Reddy Chitteti ◽  
Bradley Poteat ◽  
Sonia Rodriguez- Rodriquez ◽  
Nadia Carlesso ◽  
Melissa A. Kacena ◽  
...  

Abstract Hematopoietic Stem Cell (HSC) self-renewal and multilineage differentiation potential is governed by multiple intrinsic and extrinsic parameters. Collectively, these parameters dictate the fate of HSC and underscore the heterogeneity observed within phenotypically defined groups of stem cells. While cell cycle status and the genetic profile of HSCs are critical intrinsic modulators of cell fate, interactions with cytokines, growth factors, and cellular elements of the hematopoietic niche (HN) are key extrinsic regulators of stem cell function. We examined the impact of cellular elements of the HN on stem cell fate and maintenance by analyzing the combined effect of calvaria-derived osteoblasts (OB) and mesenchymal stromal cells (MSC) on cultured murine HSC. Murine bone marrow-derived KSL cells were co-cultured with OB alone, MSC alone, or with mixtures of OB and MSC at different ratios for one week. Cultures were supplemented with SCF, Fl-3, Tpo, IL-3, IL-6, IGF1 & OPN. OB alone, maintained the functional properties of cultured HSCs significantly better than MSC thus corroborating the importance of OB in the overall competence of the HN. On day 7, the fold-increase in the number of LSK cells was 1473 ± 291 in OB cultures, 561 ± 159 in MSC cultures, and 603 ± 263 in OB+MSC cultures (n= 4 for all 3 groups). During the same 7 day-period, the number of CFU in progeny cells expanded 74 ± 15 fold in OB cultures, 23 ± 2 fold in MSC cultures, and 27 ± 15 in OB+MSC cultures (n=3 for all groups). The substantial increase in KSL progeny in OB cultures on day 7 was accompanied by a high percentage of cells in active phases of cell cycle (% G0/G1 = 72.5 ± 7.0, n=3) compared to their counterparts in MSC or OB+MSC cultures. In addition, co-culture of KSL cells with OB resulted in an unexpected higher maintenance of the Sca-1+Lin- phenotype (26.5% ± 2.8%) relative to MSC cultures (4.6% ± 1.0%) and OB+MSC cultures (11.7% ± 1.8%; n=3 for all). Only some of these results were reproduced when KSL cells were cultured in OB-conditioned medium suggesting that cell-to-cell contact may be essential for the observed activities. To assess the in vivo potential of LSK cells maintained in these cultures, the 10-day expansion equivalent of 1,000 LSK cells were competitively transplanted in lethally irradiated congenic mice and chimerism was monitored for the next 4 months. At 1 and 2 months post-transplantation, the level of chimerism sustained by LSK cells maintained in OB cultures for 10 days surpassed or was slightly lower than that observed with freshly isolated LSK cells (72.7% vs 59.7% and 57.4% vs 74.7%, respectively) suggesting that OB culture conditions effectively expanded short-term repopulating cells. At 4 months post-transplantation, mice receiving freshly isolated LSK cells were 83.6% ± 1.8% chimeric compared to 53.7% ± 16.1% for mice transplanted with cells from OB cultures and 31.9% ± 21.4% for mice receiving cells from OB+MSC cultures. Overall, these data suggest that OB-LSK interactions promote the maintenance of both short-term and long-term repopulating cells while MSC suppress the OB-mediated activity. To investigate the mechanism of OB-mediated maintenance of stem cell phenotype and function, we examined Notch signaling using Real-Time Q-PCR on cells maintained in culture for 7 days. Relative to the expression in KSL cells, expression of Notch 2 was elevated in OB cultures and suppressed over 2-fold in cultures of MSC and OB+MSC. Similarly, the expression of Jagged 1 and 2, Delta 1 and 4, Hes 1 and 5, Deltex, and SKP2 was increased in OB cultures and suppressed in MSC and OB+MSC cultures. Collectively, these data illustrate that cell-to-cell contact between OB and KSL cells promotes the in vitro maintenance of long-term and short-term repopulating cells and suggest that this stem cell function-promoting activity is induced in part by the upregulation of Notch-mediated signaling between HSCs and osteoblasts. The suppressive effect imparted by MSC on stem cell maintenance compared to cultures of OB alone suggest that these two cellular elements of the HN have opposite effects on the fate and function of stem cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4282-4282
Author(s):  
Yan Chen ◽  
Bao-An Chen ◽  
Qing-long Guo

Abstract Abstract 4282 Objective: To evaluate the antileukemic effect of wogonoside and reveal the underlying mechanism. Method: In this study trypan blue dye exclusion assay, MTT assay, and soft agar colony formation assay were used to analysis growth inhibition of wogonoside the on AML (acute human promyelocytic) cell lines. Propidium iodide (PI)-staining and cell cycle-regulatory proteins detecting by western blots were applied to exam whether wogonoside could induce cell cycle arrest. Then a series of experiment were used to assess the ability of wogonoside to overcome the AML associated differentiation block, by using Giemsa staining, Nitroblue tetrazolium (NBT) reduction assay, and cell-surface differentiation antigens expression analysis. Real time PCR, western blots, cycloheximide inhibition test and RNA interference, nuclear and cytoplasmic fractionation, immunofluorescent staining were used to investigate the underlying mechanism. In this point we mainly focus that wogonoside exerts antileukemic by modulating of PLSCR1 gene expression, as well as influence its subcellular localization to play a role in regulating gene transcription. Result: It was demonstrated that wogonoside have the capacity to decrease the growth of myeloid cell lines by induction of G0/1 phase cell cycle arrest and differentiation. This effect is mediated by the increasing in mRNA and up-regulating protein expression of phospholipids scramblase 1 (PLSCR1). Meanwhile wogonoside promoted PLSCR1 traffic into the nucleus, which let PLSCR1 to play a role in regulating cell cycle and differentiation-related genes transcription including p21, p27, c-myc and IP3R1. Conclusion: Wogonoside induced AML cell lines to undergo differentiation and G1 phase arrest by restricting phospholipid scramblase 1 gene expression and promoting its translocation into nuclear. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 35 (2) ◽  
pp. 162-174 ◽  
Author(s):  
David Q. Matus ◽  
Lauren L. Lohmer ◽  
Laura C. Kelley ◽  
Adam J. Schindler ◽  
Abraham Q. Kohrman ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Godefroid Charbon ◽  
Belén Mendoza-Chamizo ◽  
Christopher Campion ◽  
Xiaobo Li ◽  
Peter Ruhdal Jensen ◽  
...  

During steady-state Escherichia coli growth, the amount and activity of the initiator protein, DnaA, controls chromosome replication tightly so that initiation only takes place once per origin in each cell cycle, regardless of growth conditions. However, little is known about the mechanisms involved during transitions from one environmental condition to another or during starvation stress. ATP depletion is one of the consequences of long-term carbon starvation. Here we show that DnaA is degraded in ATP-depleted cells. A chromosome replication initiation block is apparent in such cells as no new rounds of DNA replication are initiated while replication events that have already started proceed to completion.


2019 ◽  
Author(s):  
Andrea Lees ◽  
Alexander J. McIntyre ◽  
Fiammetta Falcone ◽  
Nyree T. Crawford ◽  
Christopher McCann ◽  
...  

AbstractHow p53 differentially activates cell cycle arrest versus cell death remains poorly understood. Here, we demonstrate that upregulation of canonical pro-apoptotic p53 target genes in colon cancer cells imposes a critical dependence on the long splice form of the caspase-8 regulator FLIP (FLIP(L)), which we identify as a direct p53 transcriptional target. Inhibiting FLIP(L) expression with siRNA or Class-I HDAC inhibitors promotes apoptosis in response to p53 activation by the MDM2 inhibitor Nutlin-3A, which otherwise predominantly induces cell-cycle arrest. When FLIP(L) upregulation is inhibited, apoptosis is induced in response to p53 activation via a novel ligand-independent TRAIL-R2/caspase-8 complex, which, by activating BID, induces mitochondrial-mediated apoptosis. Notably, FLIP(L) depletion inhibits p53-induced expression of the cell cycle regulator p21 and enhances p53-mediated upregulation of PUMA, with the latter activating mitochondrial-mediated apoptosis in FLIP(L)-depleted, Nutlin-3A-treated cells lacking TRAIL-R2/caspase-8. Thus, we report two previously undescribed, novel FLIP(L)-dependent mechanisms that determine cell fate following p53 activation.


Oncotarget ◽  
2015 ◽  
Vol 6 (35) ◽  
pp. 37083-37097 ◽  
Author(s):  
Giulia Zanni ◽  
Elena Di Martino ◽  
Anna Omelyanenko ◽  
Michael Andäng ◽  
Ulla Delle ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 3019-3019 ◽  
Author(s):  
E. B. Haura ◽  
L. Song ◽  
F. Lee ◽  
R. Jove

3019 Background: Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) predict sensitivity to small molecule inhibitors of EGFR such as gefitinib and erlotinib. Importantly, mutant EGFR selectively activates Akt and STAT pathways that are important in NSCLC cell survival. SRC-family kinases can cooperate with receptor tyrosine kinases to signal through downstream molecules such as PI3K/PTEN/Akt and STATs. Despite the importance of EGFR signaling in lung cancer, the known cooperation between EGFR and SRC proteins, and evidence of elevated SRC activity in human lung cancers, the effect of SRC inhibition on cell fate is unknown. Methods: We evaluated the anti-tumor efficacy of a novel orally bioavailable SRC-ABL inhibitor dasatinib (BMS-354825) in non-small cell lung cancer cell lines with defined EGFR status including wildtype EGFR and mutant EGFR sensitive to gefitinib. Western blotting was used to evaluate the effect of dasatinib on downstream signaling pathways and in vitro assays were used to evaluate the effect cell cycle, apoptosis, and cell invasion. Results: Our results show that cell fate (death versus growth arrest) in lung cancer cells exposed to a SRC inhibitor is dependent on EGFR status. Dasatinib reduces mutant EGFR lung cancer cell viability through the induction of apoptosis and G1 cell cycle arrest while having no significant apoptotic effect on cell lines with wildtype EGFR. The induction of apoptosis in EGFR mutant cell lines corresponds to downregulation of phosphorylated Akt and Stat3 survival proteins. In cell lines without EGFR mutation, dasatinib induces a G1 cell cycle arrest with associated changes in cyclin D and p27 proteins as well as inhibits activated FAK and prevents tumor cell invasion. Conclusions: Our results demonstrate that novel SRC inhibitors could be effective therapy for patients with lung cancers through disruption of cell growth, survival and tumor invasion. Our results suggest EGFR status is critical in deciding cell fate in response to SRC inhibition. [Table: see text]


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Xiaoling Zhang ◽  
June Li ◽  
Daniel P. Sejas ◽  
Qishen Pang

Hematopoietic cells are often exposed to transient hypoxia and reoxygenation as they develop and migrate. Given that bone marrow (BM) failure occurred in patients with Fanconi anemia (FA), we reason that hypoxia-then-reoxygenation represents a physiologically relevant stress for FA hematopoietic progenitor/stem cells. Here we show that expansion of Fancc–/– BM cells enriched for progenitor and stem cells was significantly decreased after 2 continuous cycles of hyperoxic-hypoxic-hyperoxic treatments compared with wild-type (WT) BM cells. This inhibition was attributable to a marked decrease of lineage-depleted (Lin–) ScaI– c-kit+ cells and more primitive Lin– ScaI+ c-kit+ cells in Fancc–/– BM cells following reoxygenation. Evaluation of the cell-cycle profile of long-term BM culture (LTBMC) revealed that a vast majority (70.6%) of reoxygenated Fancc–/– LTBMC cells was residing in the G0 and G1 phases compared with 55.8% in WT LTBMC cells. Fancc–/– LTBMC cells stained intensely for SA-β-galactosidase activity, a biomarker for senescence; this was associated with increased expression of senescence-associated proteins p53 and p21WAF1/CIP1. Taken together, these results suggest that reoxygenation induces premature senescence in Fancc–/– BM hematopoietic cells by signaling through p53, up-regulating p21, and causing senescent cell-cycle arrest. Thus, reoxygenation-induced premature senescence may be a novel mechanism underlying hematopoietic cell depletion and BM failure in FA.


Sign in / Sign up

Export Citation Format

Share Document