scholarly journals 61. Using Machine Learning for Prediction of Poor Clinical Outcomes in Adult Patients Hospitalized with COVID-19

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S162-S163
Author(s):  
Guillermo Rodriguez-Nava ◽  
Daniela Patricia Trelles-Garcia ◽  
Maria Adriana Yanez-Bello ◽  
Chul Won Chung ◽  
Sana Chaudry ◽  
...  

Abstract Background As the ongoing COVID-19 pandemic develops, there is a need for prediction rules to guide clinical decisions. Previous reports have identified risk factors using statistical inference model. The primary goal of these models is to characterize the relationship between variables and outcomes, not to make predictions. In contrast, the primary purpose of machine learning is obtaining a model that can make repeatable predictions. The objective of this study is to develop decision rules tailored to our patient population to predict ICU admissions and death in patients with COVID-19. Methods We used a de-identified dataset of hospitalized adults with COVID-19 admitted to our community hospital between March 2020 and June 2020. We used a Random Forest algorithm to build the prediction models for ICU admissions and death. Random Forest is one of the most powerful machine learning algorithms; it leverages the power of multiple decision trees, randomly created, for making decisions. Results 313 patients were included; 237 patients were used to train each model, 26 were used for testing, and 50 for validation. A total of 16 variables, selected according to their availability in the Emergency Department, were fit into the models. For the survival model, the combination of age >57 years, the presence of altered mental status, procalcitonin ≥3.0 ng/mL, a respiratory rate >22, and a blood urea nitrogen >32 mg/dL resulted in a decision rule with an accuracy of 98.7% in the training model, 73.1% in the testing model, and 70% in the validation model (Table 1, Figure 1). For the ICU admission model, the combination of age < 82 years, a systolic blood pressure of ≤94 mm Hg, oxygen saturation of ≤93%, a lactate dehydrogenase >591 IU/L, and a lactic acid >1.5 mmol/L resulted in a decision rule with an accuracy of 99.6% in the training model, 80.8% in the testing model, and 82% in the validation model (Table 2, Figure 2). Table 1. Measures of Performance in Predicting Inpatient Mortality Conclusion We created decision rules using machine learning to predict ICU admission or death in patients with COVID-19. Although there are variables previously described with statistical inference, these decision rules are customized to our patient population; furthermore, we can continue to train the models fitting more data with new patients to create even more accurate prediction rules. Figure 1. Receiver Operating Characteristic (ROC) Curve for Inpatient Mortality Table 2. Measures of Performance in Predicting Intensive Care Unit Admission Figure 2. Receiver Operating Characteristic (ROC) Curve for Intensive Care Unit Admission Disclosures All Authors: No reported disclosures

2022 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Che-Cheng Chang ◽  
Jiann-Horng Yeh ◽  
Hou-Chang Chiu ◽  
Yen-Ming Chen ◽  
Mao-Jhen Jhou ◽  
...  

Myasthenia gravis (MG), an acquired autoimmune-related neuromuscular disorder that causes muscle weakness, presents with varying severity, including myasthenic crisis (MC). Although MC can cause significant morbidity and mortality, specialized neuro-intensive care can produce a good long-term prognosis. Considering the outcomes of MG during hospitalization, it is critical to conduct risk assessments to predict the need for intensive care. Evidence and valid tools for the screening of critical patients with MG are lacking. We used three machine learning-based decision tree algorithms, including a classification and regression tree, C4.5, and C5.0, for predicting intensive care unit (ICU) admission of patients with MG. We included 228 MG patients admitted between 2015 and 2018. Among them, 88.2% were anti-acetylcholine receptors antibody positive and 4.7% were anti-muscle-specific kinase antibody positive. Twenty clinical variables were used as predictive variables. The C5.0 decision tree outperformed the other two decision tree and logistic regression models. The decision rules constructed by the best C5.0 model showed that the Myasthenia Gravis Foundation of America clinical classification at admission, thymoma history, azathioprine treatment history, disease duration, sex, and onset age were significant risk factors for the development of decision rules for ICU admission prediction. The developed machine learning-based decision tree can be a supportive tool for alerting clinicians regarding patients with MG who require intensive care, thereby improving the quality of care.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eyal Klang ◽  
Benjamin R. Kummer ◽  
Neha S. Dangayach ◽  
Amy Zhong ◽  
M. Arash Kia ◽  
...  

AbstractEarly admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200–256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80–324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87–0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91–0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92–0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.


2019 ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Dongkai Li ◽  
Jie He ◽  
Fanglan Zheng ◽  
...  

BACKGROUND Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of computer generated, algorithm-based heparin dosing recommendations. OBJECTIVE The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively. METHODS Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive Care III, MIMIC-III; e–Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and accuracy. RESULTS Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In 3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3: 95.45%) therapeutic ranges, respectively. CONCLUSIONS The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how machine learning–based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis and validation suggested that the model outperformed standard practice heparin treatment dosing.


2020 ◽  
Author(s):  
Sujeong Hur ◽  
Ji Young Min ◽  
Junsang Yoo ◽  
Kyunga Kim ◽  
Chi Ryang Chung ◽  
...  

BACKGROUND Patient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE) is considered as the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult component of quality care. OBJECTIVE This study aimed to develop and validate prediction models for UE in ICU patients using machine learning. METHODS This study was conducted an academic tertiary hospital in Seoul. The hospital had approximately 2,000 inpatient beds and 120 intensive care unit (ICU) beds. The number of patients, on daily basis, was approximately 9,000 for the out-patient. The number of annual ICU admission was approximately 10,000. We conducted a retrospective study between January 1, 2010 and December 31, 2018. A total of 6,914 extubation cases were included. We developed an unplanned extubation prediction model using machine learning algorithms, which included random forest (RF), logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM). For evaluating the model’s performance, we used area under the receiver operator characteristic curve (AUROC). Sensitivity, specificity, positive predictive value negative predictive value, and F1-score were also determined for each model. For performance evaluation, we also used calibration curve, the Brier score, and the Hosmer-Lemeshow goodness-of-fit statistic. RESULTS Among the 6,914 extubation cases, 248 underwent UE. In the UE group, there were more males than females, higher use of physical restraints, and fewer surgeries. The incidence of UE was more likely to occur during the night shift compared to the planned extubation group. The rate of reintubation within 24 hours and hospital mortality was higher in the UE group. The UE prediction algorithm was developed, and the AUROC for RF was 0.787, for LR was 0.762, for ANN was 0.762, and for SVM was 0.740. CONCLUSIONS We successfully developed and validated machine learning-based prediction models to predict UE in ICU patients using electronic health record data. The best AUROC was 0.787, which was obtained using RF. CLINICALTRIAL N/A


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiangrong Zhai ◽  
Zi Lin ◽  
Hongxia Ge ◽  
Yang Liang ◽  
Nan Li ◽  
...  

AbstractThe number of critically ill patients has increased globally along with the rise in emergency visits. Mortality prediction for critical patients is vital for emergency care, which affects the distribution of emergency resources. Traditional scoring systems are designed for all emergency patients using a classic mathematical method, but risk factors in critically ill patients have complex interactions, so traditional scoring cannot as readily apply to them. As an accurate model for predicting the mortality of emergency department critically ill patients is lacking, this study’s objective was to develop a scoring system using machine learning optimized for the unique case of critical patients in emergency departments. We conducted a retrospective cohort study in a tertiary medical center in Beijing, China. Patients over 16 years old were included if they were alive when they entered the emergency department intensive care unit system from February 2015 and December 2015. Mortality up to 7 days after admission into the emergency department was considered as the primary outcome, and 1624 cases were included to derive the models. Prospective factors included previous diseases, physiologic parameters, and laboratory results. Several machine learning tools were built for 7-day mortality using these factors, for which their predictive accuracy (sensitivity and specificity) was evaluated by area under the curve (AUC). The AUCs were 0.794, 0.840, 0.849 and 0.822 respectively, for the SVM, GBDT, XGBoost and logistic regression model. In comparison with the SAPS 3 model (AUC = 0.826), the discriminatory capability of the newer machine learning methods, XGBoost in particular, is demonstrated to be more reliable for predicting outcomes for emergency department intensive care unit patients.


Sign in / Sign up

Export Citation Format

Share Document