scholarly journals 1022. Evaluating the Impact of GenMark Dx ePlex® Blood Culture Identification (BCID) on Gram-negative Bloodstream Infections

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S602-S603
Author(s):  
Pia Cumagun ◽  
Jeremy Meeder ◽  
Derek Moates ◽  
Hannah Pierce ◽  
Todd P McCarty ◽  
...  

Abstract Background The GenMark Dx ePlex BCID Gram-Negative (GN) panel utilizes electrowetting technology to detect the most common causes of GN bacteremia (21 targets) and 6 antimicrobial resistance (AMR) genes from positive blood culture (BC) bottles. Rapid detection of extended spectrum β-lactamases (ESBL: CTX-M & carbapenemases: KPC, NDM, IMP, VIM, OXA 23/48), and highly resistant bacteria such as S. maltophilia should enable early optimization of antimicrobial therapy. Methods In this prospective study, aliquots of positive BC bottles with GN bacteria detected on Gram stain (GS) (n=108) received standard of care (SOC) culture and antimicrobial susceptibility testing (AST). Additionally, samples were evaluated with the BCID-GN panel but only SOC results were reported in the EMR and available to inform clinical decisions. Chart reviews were performed to evaluate the impact of the BCID-GN panel on the time to organism identification, AST results, and optimization of antimicrobial therapy. Results A total of 108 patients are included in the analysis (Table 1). Escherichia coli was the most common bacteria identified followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter species (Table 2). There were 11 (10.2%) polymicrobial bacteremias. Repeat BCs were obtained in 68 (63%) patients of which 13 (19%) were persistently positive. Eight (7%) patients had evidence of additional gram-positive (GP) pathogens. Organism identification occurred 26.7 hours faster than culture. In conjunction with GS, negative pan-GP marker data could have helped providers make the decision to remove GP antibiotic coverage in 63 (58%) patients. Narrowing from empiric meropenem could have occurred in 5 patients. Of 10 individuals infected with resistant isolates (1 S. maltophilia, 1 OXA 23/48, and 8 CTX-M) empiric therapy was ineffective in 4 (40%) cases. Optimization of antimicrobial therapy for 9 (8.3%) patients could have occurred an average of 52.4 hours earlier than standard methods. Table 1. Patient demographics and co-morbidities. Table 2. Gram-negative bacteria frequency. Conclusion The BCID-GN panel enabled earlier time to optimal treatment of highly resistant bacteria as well as multiple opportunities for narrowing gram negative spectrum and a higher degree of certainty in cessation of broad-spectrum gram-positive antibiotics Disclosures Todd P. McCarty, MD, Cidara (Grant/Research Support)GenMark (Grant/Research Support, Other Financial or Material Support, Honoraria for Research Presentation)T2 Biosystems (Consultant) Sixto M. Leal, Jr., MD, PhD, Abnova (Grant/Research Support)AltImmune (Grant/Research Support)Amplyx Pharmaceuticals (Grant/Research Support)Astellas Pharmaceuticals (Grant/Research Support)CNINE Dx (Grant/Research Support)GenMark Diagnostics (Grant/Research Support, Other Financial or Material Support, Honoraria- Research Presentation)IHMA (Grant/Research Support)IMMY Dx (Grant/Research Support)JMI/Sentry (Grant/Research Support)mFluiDx Dx (Grant/Research Support)SpeeDx Dx (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/Research Support)

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S215-S215
Author(s):  
Jeremy Meeder ◽  
Derek Moates ◽  
Hannah Pierce ◽  
Jamie Hutchinson ◽  
Pia Cumagun ◽  
...  

Abstract Background The ePlex BCID Gram-Negative (GN) panel utilizes electrowetting technology to detect the most common causes of GN bacteremia (21 targets) and 6 antimicrobial resistance genes from positive blood culture bottles. Rapid detection of extended spectrum β-lactamases (ESBL; CTX-M), carbapenemases (KPC, NDM, IMP, VIM, OXA 23/48), and highly resistant bacteria such as Stenotrophomonas maltophilia enables early optimization of antimicrobial therapy. Methods In this prospective study, we evaluated the performance of the BCID-GN panel compared to traditional standard of care culture and susceptibility testing with organism identification using the BioMerieux Vitek MS Matrix Assisted Laser Desorption Ionization (MALDI) Time of Flight mass spectrometry. Samples submitted for standard of care testing in Biomerieux BacT/Alert resin FA/FN blood culture bottles on the BacT/Alert VIRTUO automated blood culture system with GN bacteria on direct exam (n=108) were included. Results All but two GN bacteria identified by MALDI were represented on the BCID-GN Panel (106/108, 98.1%) and most tests (107/108, 99.1%) yielded valid results. Discordant analyses revealed a positive percent agreement (PPA) of 102/105 (97.2%) with 3 false negatives (2 pan-susceptible Enterobacterales, 1 ESBL E.coli) and a negative percent agreement (NPA) of 105/105 (100%). Consistent with alternative resistance mechanisms, only 8/12 (66.7%) of Enterobacterales with resistance to 3rd generation cephalosporins harbored the CTX-M gene. In contrast, 8/8 (100%) of isolates from samples harboring the CTX-M gene were resistant to 3rd generation cephalosporins. Conclusion Detection of 1 S. maltophilia, 1 Acinetobacter baumannii expressing OXA 23/48, and 8 Enterobacterales expressing CTX-M represent opportunities for early optimization of antimicrobial therapy in 10/108 (9.3%) of samples. The BCID-GN Panel provides rapid accurate detection of resistant gram negative bacteria enabling high quality data driven optimization of antimicrobial therapy. Disclosures Todd P. McCarty, MD, Cidara (Grant/Research Support)GenMark (Grant/Research Support, Other Financial or Material Support, Honoraria for Research Presentation)T2 Biosystems (Consultant) Sixto M. Leal, Jr., MD, PhD, Abnova (Grant/Research Support)AltImmune (Grant/Research Support)Amplyx Pharmaceuticals (Grant/Research Support)Astellas Pharmaceuticals (Grant/Research Support)CNINE Dx (Grant/Research Support)GenMark Diagnostics (Grant/Research Support, Other Financial or Material Support, Honoraria- Research Presentation)IHMA (Grant/Research Support)IMMY Dx (Grant/Research Support)JMI/Sentry (Grant/Research Support)mFluiDx Dx (Grant/Research Support)SpeeDx Dx (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/Research Support)


2018 ◽  
Author(s):  
Andrew S. Tseng ◽  
Sabirah N. Kasule ◽  
Felicia Rice ◽  
Lanyu Mi ◽  
Lynn Chan ◽  
...  

ABSTRACTBackgroundThere is growing interest in the use of rapid blood culture identification (BCID) panels in antimicrobial stewardship programs (ASP). While many studies have looked at its clinical and economic utility, its comparative utility in gram-positive and gram-negative blood stream infections (BSI) have not been as well characterized.MethodsThe study was a quasi-experimental retrospective study at the Mayo Clinic in Phoenix, Arizona. All adult patients with positive blood cultures before BCID implementation (June 2015 to December 2015) and after BCID implementation (June 2016 to December 2016) were included. The outcomes of interest included: time to first appropriate antibiotic escalation, time to first appropriate antibiotic de-escalation, time to organism identification, LOS, infectious disease consultation, discharge disposition, and in-hospital mortality.ResultsIn total, 203 patients were included in this study. There was a significant difference in the time to organism identification between pre- and post-BCID cohorts (27.1h vs. 3.3h, p<0.0001). BCID did not significantly reduce the time to first appropriate antimicrobial escalation or de-escalation for either GP-BSIs or GN-BSIs. Providers were more likely to escalate antimicrobial therapy in GP-BSIs after gram stain and more likely to de-escalate therapy in GN-BSIs after susceptibilities. While there were no significant differences in changes in antimicrobial therapy after organism identification by BCID, over a quarter of providers (28.1%) made changes after organism identification.ConclusionsWhile BCID significantly reduced the time to identification for both GP-BSIs and GN-BSIs, BCID did not reduce the time to first appropriate antimicrobial escalation and de-escalation.


2018 ◽  
Vol 5 (12) ◽  
Author(s):  
Andrew S Tseng ◽  
Sabirah N Kasule ◽  
Felicia Rice ◽  
Lanyu Mi ◽  
Lynn Chan ◽  
...  

Abstract Background There is growing interest in the use of rapid blood culture identification (BCID) in antimicrobial stewardship programs (ASPs). Although many studies have looked at its clinical and economic utility, its comparative utility in gram-positive and gram-negative blood stream infections (BSIs) has not been as well characterized. Methods The study was a quasi-experimental retrospective study at the Mayo Clinic in Phoenix, Arizona. All adult patients with positive blood cultures before BCID implementation (June 2015 to December 2015) and after BCID implementation (June 2016 to December 2016) were included. The outcomes of interest included time to first appropriate antibiotic escalation, time to first appropriate antibiotic de-escalation, time to organism identification, length of stay, infectious diseases consultation, discharge disposition, and in-hospital mortality. Results In total, 203 patients were included in this study. There was a significant difference in the time to organism identification between the pre- and post-BCID cohorts (27.1 hours vs 3.3 hours, P &lt; .0001). BCID did not significantly reduce the time to first appropriate antimicrobial escalation or de-escalation for either gram-positive BSIs (GP-BSIs) or gram-negative BSIs (GN-BSIs). Providers were more likely to escalate antimicrobial therapy in GP-BSIs after gram stain and more likely to de-escalate therapy in GN-BSIs after susceptibilities. Although there were no significant differences in changes in antimicrobial therapy for organism identification by BCID vs traditional methods, more than one-quarter of providers (28.1%) made changes after organism identification. There were no differences in hospital length of stay or in-hospital mortality comparing pre- vs post-BCID. Conclusions Although BCID significantly reduced the time to identification for both GP-BSIs and GN-BSIs, BCID did not reduce the time to first appropriate antimicrobial escalation and de-escalation.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mohabaw Jemal ◽  
Teshiwal Deress ◽  
Teshome Belachew ◽  
Yesuf Adem

Background. The emergence and spread of antimicrobial resistance in bacteria is recognized as a global public health problem. Bloodstream infection with antimicrobial-resistant bacteria in HIV/AIDS patients makes the problem more challenging. So, regular and periodic diagnosis and use of the appropriate antimicrobial susceptibility pattern determination is the only option for decreasing the prevalence and development of drug-resistant bacteria. Methods. An institution-based cross-sectional study was conducted among 384 HIV/AIDS patients. Sociodemographic data of patients were recorded using structured questionnaires. Blood cultures were collected with BACTEC aerobic blood culture bottles. A pair of samples was collected from each patient aseptically and incubated at 37°. If samples are positive for bacterial agents, they were subcultured to solid media such as blood agar plate, chocolate agar plate, and MacConkey agar plates. Identification was performed using colony characteristics and standard biochemical techniques. The antimicrobial susceptibility test was determined by the Kirby–Bauer disc diffusion method. Data entry and analysis were performed while using SPSS version 20. Descriptive statistics were performed to calculate frequencies. Results. Altogether, 384 patients were included, and 123 blood cultures were positive, so that the yield was thus 32%. About 46 (37.4%) of Gram-negative and 77 (62.6%) of Gram-positive bacterial species were identified. Among Gram-negative bacterial isolates, K. pneumoniae was the leading pathogen, 19 (41.3%), whereas S. aureus, 38 (49.4%), was predominant among Gram-positive isolates. In his study, the majority of Gram-positive isolates showed high level of resistance to penicillin, 72 (95.5%), tetracycline, 55 (71.4%), and cotrimoxazole, 45 (58.4%). About 28 (73.6%) of S. aureus isolates were also methicillin-resistant. Gram-negative bacterial isolates also showed a high resistance to ampicillin (91.3%), tetracycline (91.3%), and gentamicin (47.8%). Overall, about 78% of multidrug resistance was observed. Conclusion. Several pathogens were resistant to greater than five antimicrobial agents, so that proper management of patients with bacteremia is needed, and a careful selection of effective antibiotics should be practiced.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S256-S256
Author(s):  
Kristen R Kent ◽  
Nellie Darling ◽  
Xue Geng ◽  
Gavin Clark ◽  
Marybeth Kazanas ◽  
...  

Abstract Background The IL-6 inhibitor Tocilizumab (TOCI) has been associated with infections in 5-8% of patients with Rheumatoid Arthritis. TOCI has now been recommended as a treatment option for select patients with COVID-19; however, the risk of infection in this patient population is yet to be determined. Methods We performed a retrospective chart review of patients diagnosed with COVID-19 and admitted to MedStar hospitals within the D.C./Baltimore corridor from 03/01/2020 to 12/31/2020. We identified patients who had positive culture data within 30 days of administration of TOCI-based regimens and analyzed clinical characteristics and outcomes. Univariate analyses (Wilcoxon, T-test, Chi-Square, Fisher’s Exact) were used to compare these outcome variables between patients who had post-treatment infections and those who did not. Results A total of 220 patients received TOCI-based regimens; 16% (N=36) of patients developed positive cultures within 30 days of treatment. Of the 99 cultures, 50% were gram positive (N=49), 38% were gram negative (N=38), 10% were Candida spp. (N=10), and 2% were anaerobic organisms (N=2). Only 9% (8/87) of the gram positive and gram negative organisms were MDROs. Bloodstream infections were the most common and accounted for 58.4% of all infections. Length of stay (LOS) was approximately twice as long in those with post-treatment infections (26 days) compared to those without infections (14 days, p&lt; 0.001). Although the mortality rate was higher in patients with infections after TOCI-based treatment compared to patients with no post-treatment infection (47% vs 31% respectively), this did not reach statistical significance (p=0.09). Moreover, there was no significant difference in the infection rate of patients treated with TOCI alone compared to TOCI and Dexamethasone (16.6% vs. 13.3%, p=0.99). No cases of invasive Aspergillosis were observed. Conclusion Tocilizumab treatment in patients with COVID-19 may predispose patients to an increased risk of infection which is associated with a prolonged LOS and possibly higher mortality. We observed a two-fold increase in infections in COVID-19 patients compared to other patient groups receiving this treatment. Disclosures Princy N. Kumar, MD, AMGEN (Other Financial or Material Support, Honoraria)Eli Lilly (Grant/Research Support)Gilead (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)GSK (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)Merck & Co., Inc. (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S208-S208
Author(s):  
Jeremy Meeder ◽  
Derek Moates ◽  
Hannah Pierce ◽  
Jamie Hutchinson ◽  
Cameron White ◽  
...  

Abstract Background The ePlex BCID Gram-Positive (GP) panel utilizes electrowetting technology to detect the most common causes of GP bacteremia (20 targets) and 4 antimicrobial resistance genes in positive blood culture bottles. Rapid detection of intrinsic vancomycin resistance and acquired resistance genes (mecA, mecC, vanA, vanB) enables early optimization of antimicrobial therapy whereas early detection of common contaminants decreases unnecessary antibiotic utilization and hospitalizations. Methods In this prospective study, we evaluated the performance of the BCID-GP panel compared to traditional standard of care culture and susceptibility testing with organism identification using the BioMerieux Vitek MS Matrix Assisted Laser Desorption Ionization (MALDI) Time of Flight mass spectrometry. Samples submitted for standard of care testing in Biomerieux BacT/Alert resin FA/FN blood culture bottles on the BacT/Alert VIRTUO automated blood culture system with GP bacteria on direct exam (n=100) were included. Results All GP bacteria were represented on the BCID-GP panel, most tests 97/100 (97%) yielded valid results, 53 common skin contaminants (50 coagulase negative staphylococci (CNS), 2 Bacillus, 1 Corynebacterium) were identified, and 7/7 coinfections with Gram negative (GN) bacteria were detected by the Pan GN target and identified by the BCID-GN panel. Discordant analyses revealed a positive percent agreement (PPA) of 96/97 (99%) with 1 false negative CNS and a negative percent agreement (NPA) of 92/97 (94.8%) with 5 false positives for either S. epidermidis or Corynebacterium. Detection of vanA yielded a PPA of 4/4 and NPA of 9/9. mecA gene detection exhibited a PPA of 14/14 and NPA of 14/14 for S. aureus and a PPA of 31/32 (97%) and NPA of 16/16 for coagulase negative staphylococci with 1 false negative methicillin resistant S. epidermidis. Conclusion Detection of acquired vancomycin resistance (n=4) and absence of mecA gene detection in Staphylococcus species (n=30) represent opportunities for early optimization of antimicrobial therapy in 34/100 (34%) of samples. The BCID-GP panel provides rapid accurate detection of resistant isolates and common contaminants enabling high quality data driven optimization of antimicrobial therapy. Disclosures Todd P. McCarty, MD, Cidara (Grant/Research Support)GenMark (Grant/Research Support, Other Financial or Material Support, Honoraria for Research Presentation)T2 Biosystems (Consultant) Sixto M. Leal, Jr., MD, PhD, Abnova (Grant/Research Support)AltImmune (Grant/Research Support)Amplyx Pharmaceuticals (Grant/Research Support)Astellas Pharmaceuticals (Grant/Research Support)CNINE Dx (Grant/Research Support)GenMark Diagnostics (Grant/Research Support, Other Financial or Material Support, Honoraria- Research Presentation)IHMA (Grant/Research Support)IMMY Dx (Grant/Research Support)JMI/Sentry (Grant/Research Support)mFluiDx Dx (Grant/Research Support)SpeeDx Dx (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/Research Support)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S604-S605
Author(s):  
Cameron White ◽  
Jeremy Meeder ◽  
Derek Moates ◽  
Hannah Pierce ◽  
Todd P McCarty ◽  
...  

Abstract Background The ePlex BCID Gram-Positive (GP) panel utilizes electrowetting technology to detect the most common causes of GP bacteremia (20 targets) and 4 antimicrobial resistance (AMR) genes in positive blood culture (BC) bottles. Rapid detection of intrinsic vancomycin resistance and acquired resistance genes (mecA, mecC, vanA, vanB) enables early optimization of antimicrobial therapy whereas early detection of common contaminants is expected to decrease unnecessary antibiotic utilization and hospitalizations. Methods In this prospective study, aliquots of BC bottles with GP bacteria detected on Gram stain (GS) (n=101) received standard of care (SOC) culture and antimicrobial susceptibility testing (AST). Additionally, samples were evaluated with the BCID-GP panel but only SOC results were reported in the EMR and available to inform clinical decisions. Patients were excluded if the sample was a subsequent culture in a persistent episode of bacteremia (n=17) or if the assay failed (n=4). Chart review was performed to evaluate the expected impact of the BCID-GP panel on the time to organism identification, AST results, and optimization of antimicrobial therapy. Results A total of 80 patients were included in the final analysis (Table 1). S. epidermidis was the most common bacteria identified, followed by S. aureus, and other coagulase-negative staphylococci. Thirty-nine patients with staphylococci (48.8%) had the mecA gene detected and 2 patients with E. faecium had the vanA gene detected. The BCID-GP panel saved a mean of 24.4 hours (h) to identification and 48.3h to susceptibility testing compared to standard methods across all patients. In 38 patients (47.5%), the BCID-GP panel result could have enabled an earlier change in antibiotic therapy. Table 2 highlights opportunities to optimize antimicrobial therapy 53.4h earlier for 16 (20%) patients with organisms expressing AMR genes, 29.2h earlier for 8 (10%) patients infected with organisms, such as streptococci, with very low resistance rates, and to stop antimicrobial therapy 42.9h earlier for 14 (17.5%) patients with contaminated blood cultures. Conclusion The BCID-GP panel could have enabled earlier optimization or stopping of antibiotics in many patients with significant time savings compared to standard laboratory methods. Disclosures Todd P. McCarty, MD, Cidara (Grant/Research Support)GenMark (Grant/Research Support, Other Financial or Material Support, Honoraria for Research Presentation)T2 Biosystems (Consultant) Sixto M. Leal, Jr., MD, PhD, Abnova (Grant/Research Support)AltImmune (Grant/Research Support)Amplyx Pharmaceuticals (Grant/Research Support)Astellas Pharmaceuticals (Grant/Research Support)CNINE Dx (Grant/Research Support)GenMark Diagnostics (Grant/Research Support, Other Financial or Material Support, Honoraria- Research Presentation)IHMA (Grant/Research Support)IMMY Dx (Grant/Research Support)JMI/Sentry (Grant/Research Support)mFluiDx Dx (Grant/Research Support)SpeeDx Dx (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/Research Support)


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S296-S297
Author(s):  
Ritu Banerjee ◽  
Ritu Banerjee ◽  
Lauren Komarow ◽  
Abinash Virk ◽  
Nipunie S Rajapakse ◽  
...  

Abstract Background Rapid blood culture diagnostics increase cost and have unclear benefit for patients with Gram-negative bacilli (GNB) bloodstream infections (BSIs). We conducted a multicenter, prospective randomized controlled trial (RAPIDS-GN), comparing outcomes of patients with GNB BSI who had blood culture testing with standard of care (SOC) culture and antibiotic susceptibility testing (AST) vs. rapid organism identification (ID) and phenotypic AST using the Accelerate Pheno System (AXDX). Methods Subjects with blood culture Gram stain showing GNB were randomized to receive SOC testing with antimicrobial stewardship review (AS) or AXDX plus SOC testing with AS, at two academic medical centers between October 2017 and October 2018. SOC testing included rapid MALDI-TOF mass spectrometry ID and agar dilution or broth microdilution AST. In a modified intention to treat analysis, subjects were excluded if: Gram stain was erroneous, culture was positive during off-hours, blood culture in the prior week had GNB, they were deceased/on comfort care, or admitted to a nonparticipating hospital. The primary outcome was time to first antibiotic modification within 72 hours after randomization. Subjects without antibiotic modifications were assigned a time of 72 hours. No censoring was observed. T-tests and Wilcoxon rank-sum tests were used for statistical analyses. Results Of 500 randomized subjects, 448 were included (226 SOC, 222 AXDX). Groups did not differ in baseline characteristics (Table 1). Median (IQR) hours to first antibiotic modification was faster in the AXDX vs. SOC group [8.6 (2.6, 27.6) vs. 14.9 (3.3, 41.1)], P = 0.02 (Figure 1). Median (IQR) hours to first Gram-negative antibiotic modification (including escalation and de-escalation) was faster in the AXDX than SOC group [17.4 (4.9, 72) vs. 42.1 (10.1, 72)], P < 0.001 (Figure 2). Groups did not differ in clinical outcomes (Table 2). Mean (S.D.) time to results was faster for AXDX than SOC for organism ID [2.7 (1.2) h vs. 15.6 (20.3) h, P < 0.001] and AST [13 (55.7) h vs. 54.6 (45.5) h, P < 0.001]. Conclusion In the largest trial to evaluate the clinical impact of a blood culture diagnostic for GNB BSI, we found that rapid organism ID and phenotypic AST led to faster changes in antibiotic therapy for Gram-negative bacteremia. Disclosures Ritu Banerjee, MD, PhD, Accelerate Diagnostics: Grant/Research Support; BioFire: Research Grant; Biomerieux: Research Grant; Roche: Research Grant Robin Patel, MD, ASM and IDSA: Other Financial or Material Support, Travel reimbursement, editor’s stipends; CD Diagnostics, Merck, Hutchison Biofilm Medical Solutions, Accelerate Diagnostics, ContraFect, TenNor Therapeutics Limited, Shionogi: Grant/Research Support; Curetis, Specific Technologies, NextGen Diagnostics, PathoQuest, Qvella: Consultant; NBME, Up-to-Date, the Infectious Diseases Board Review Course: Honorarium recipient, Other Financial or Material Support; Patent on Bordetella pertussis/parapertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued: Other Financial or Material Support, Patents.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S136-S136
Author(s):  
M Abdelmonem ◽  
A Gad AlKarim ◽  
S Eissa ◽  
A Boraik ◽  
M Shedid

Abstract Introduction/Objective Bacteremia is one of the major causes of life-threatening complications in patients with cancer. Significant changes in the spectrum of microorganisms isolated from blood culture BC have been reported in cancer patients over the past years. This study aimed to determine the predominant bacterial species causing bacteremia among febrile neutropenic FN cancer patients at the National Cancer Institute in Egypt (NCI). Methods A total of 300 BC collected from 300 FN cancer patients at NCI, Cairo. All cases were in patients with a mean age of 51 years, 158 patients were male (53%) while 142 patients were females (47%). BC was collected for microbiological investigations. Identification of the isolated organisms by the cultural characters (Morphological of bacterial isolates, Gram stain reaction, motility test, and biochemical tests) for each organism using standard semi- automated techniques. Results 68 (22.6%) BC were positive while 232 (77.4%) BC were negative. Gram-negative bacteria isolated and identified in 11 blood cultures (16.17%), while gram-positive isolates identified in 57 BC (83.8%). Among the Gram- negative organisms, 4 (5.8%) were Pseudomonas aeruginosa, 4 (5.8%) were E. coli, 1 (1.5%) was Klebssila pneumoni, 1 (1.5%) was Acintobacter and 1 (1.5%) was Citrobacter frenudiri. Among the Gram-positive organisms, Coagulase-negative Staphylococci CNS were most predominant in most cases 35 (61.4%). 7 (12%) were S. aureus, 5 (8%) were S. epidermises, 5 (8%) were Streptococcus spp., 1 (1.5%) were Listeria spp., 4 (5.88%) Achromobacter spp., 4 (5.88%) were Gram-Positive Cocci and 1(1.5%) Micrococcus spp. The study of R-factor in all positive BC showed the resistant bacterial isolates to the commonly used antimicrobial agents, especially to ampicillin and penicillin. Conclusion This study showed that patients with febrile neutropenia are vulnerable to developing bacteremia. the prevalence rate of bacteremia in post-chemotherapy FN in our center is relatively high compared to the national rate. Multidrug-resistant are the main cause of bacteremia in febrile cancer patients in Egypt. There is a need for ongoing antimicrobial surveillance to guide antimicrobial therapy and support the development of infection control programs in Egypt


Author(s):  
Mariana Chumbita ◽  
Pedro Puerta-Alcalde ◽  
Carlota Gudiol ◽  
Nicole Garcia-Pouton ◽  
Júlia Laporte-Amargós ◽  
...  

Objectives: We analyzed risk factors for mortality in febrile neutropenic patients with bloodstream infections (BSI) presenting with septic shock and assessed the impact of empirical antibiotic regimens. Methods: Multicenter retrospective study (2010-2019) of two prospective cohorts comparing BSI episodes in patients with or without septic shock. Multivariate analysis was performed to identify independent risk factors for mortality in episodes with septic shock. Results: Of 1563 patients with BSI, 257 (16%) presented with septic shock. Those patients with septic shock had higher mortality than those without septic shock (55% vs 15%, p<0.001). Gram-negative bacilli caused 81% of episodes with septic shock; gram-positive cocci, 22%; and Candida species 5%. Inappropriate empirical antibiotic treatment (IEAT) was administered in 17.5% of septic shock episodes. Empirical β-lactam combined with other active antibiotics was associated with the lowest mortality observed. When amikacin was the only active antibiotic, mortality was 90%. Addition of empirical specific gram-positive coverage had no impact on mortality. Mortality was higher when IEAT was administered (76% vs 51%, p=0.002). Age >70 years (OR 2.3, 95% CI 1.2-4.7), IEAT for Candida spp. or gram-negative bacilli (OR 3.8, 1.3-11.1), acute kidney injury (OR 2.6, 1.4-4.9) and amikacin as the only active antibiotic (OR 15.2, 1.7-134.5) were independent risk factors for mortality, while combination of β-lactam and amikacin was protective (OR 0.32, 0.18-0.57). Conclusions: Septic shock in febrile neutropenic patients with BSI is associated with extremely high mortality, especially when IEAT is administered. Combination therapy including an active β-lactam and amikacin results in the best outcomes.


Sign in / Sign up

Export Citation Format

Share Document