scholarly journals Retail Meat as a Potential Transmission Source of Community-Acquired Urinary Tract Infection

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S25-S26
Author(s):  
Reina Yamaji ◽  
Julia Rubin ◽  
Cindy Friedman ◽  
Patrick McDermott ◽  
Melody Hung-Fan ◽  
...  

Abstract Background Escherichia coli causes approximately 80% of community-acquired UTI (CA-UTI), but the sources of these uropathogenic E. coli infections are not well established. Recent studies have suggested that food, especially poultry, may serve as a source of UPEC. Here we prospectively examined E. coli isolates from patients with CA-UTI and retail meat concurrently available from the same geographic region to determine the frequency of shared genotypes. Methods Between September 2016 and May 2017, we collected urine samples from patients with UTI examined at a university-affiliated healthcare center. During the same time, we recovered E.coli from retail meat products (chicken breast, ground turkey, ground beef, and pork chops) collected as part of the National Antimicrobial Resistance Monitoring System (NARMS) FDA retail meat sampling program in Northern California. Urine samples and buffered peptone water containing meat samples were cultured on MacConkey agar. Lactose-positive and indole-positive colonies were presumptively identified as E coli. Bacterial DNA was extracted by a freeze-boil method. E. coli isolates were genotyped by multilocus sequence typing (MLST). Results Of 1020 urine samples, E. coli was isolated from 210 (21%). Five pandemic MLST genotypes (ST95, ST127, ST69, ST73, and ST131) accounted for 126 (60%) isolates. Of 200 meat samples, E. coli was isolated from 76 (38%). E. coli was isolated from 29 (73%) of 40 ground turkey samples, 34 (43%) of 80 chicken breast, 7 (18%) of 40 ground beef, and 6 (15%) of 40 pork chop. ST69 and ST131 were isolated from 3 chicken samples. Other genotypes of E. coli isolates from meat samples and CA-UTI included ST10 (3), ST38 (2), ST88 (1), ST117 (5), ST906 (1), and ST1844 (1). Eleven (32%) of 34 chicken samples contained UPEC strains, compared with 4 (14%) of 29 ground turkey samples, and 1 (17%) of 6 pork chop samples; no beef samples contained UPEC strains. Conclusion Overall, we found that nearly one-quarter of retail poultry products that we tested contained UPEC strains with the same MLST genotypes found in CA-UTI patients. Foodborne transmission may account for a substantial proportion of CA-UTI. Additional studies are needed to demonstrate transmission of these genotypes from poultry to patients and to target possible prevention measures. Disclosures All authors: No reported disclosures.

Author(s):  
J. Yammine ◽  
L. Karam

Background: Controlling and reducing the food-borne illnesses remain one of the most challenging problems encountered by food authorities worldwide. This study was conducted to assess the microbiological quality of chicken breast, chicken liver, local and imported offal, and ground beef meat products sold in the Lebanese retail market. Methods: Thirty-five chicken breast and liver samples produced by ISO 22000 certified and non-certified companies were purchased from the market. Chicken samples were tested for Total Aerobic Count (TAC), Total Coliforms (TC), Staphylococcus aureus, Salmonella spp., and Listeria monocytogenes. Twenty offal and ground beef meat samples were collected as sold in bulk from the market and were analyzed for Escherichia coli O157:H7. Statistical analysis was performed using SPSS statistical software v. 23.0. Results: The results showed that 20, 100, 20, 80, and 0% of the analyzed chicken breast samples were rejected for TAC, TC, S. aureus, Salmonella spp., and L. monocytogenes, respectively. For chicken liver samples, 100% of the samples were rejected for TC and Salmonella spp., while all the samples were accepted for TAC, S. aureus, and L. monocytogenes. E. coli O157:H7 was absent in all meat samples. Conclusion: Some chicken samples from both certified and non-certified suppliers exceeded the standard upper limits showing hygienic concerns; whereas meat products were safe for consumption regarding the pathogenic E. coli O157:H7.


Author(s):  
Özgür Çadırcı ◽  
Ali Gücükoğlu ◽  
Göknur Terzi Güzel ◽  
Tolga Uyanık ◽  
Abdulaziz Abdulahi ◽  
...  

Shiga-like toxin producing Escherichia coli is still an important public issue which causes extremely dangerous health problems. This study was planned in order to examine the inhibitory effect of Modified Atmosphere Packaging application on E. coli O157 and O157: H7. The purposes of the present study were to detect E. coli O157 and O157: H7 strains from ground and cubed beef. A total of 100 MAP cattle meat products (50 minced meat, 50 meat cubes) were collected from the markets and butchers in Samsun province between May and October 2013. According to results, 1(1/50-2%) E. coli O157 and 1(1/50-2%) E. coli O157: H7 strains isolated from 50 ground beef samples, while 1 (1/50-2%) E. coli O157 strain was identified from 50 cubed beef samples. It was determined that E. coli O157 isolate obtained from the MAP ground beef carried stx1, stx2 genes; E. coli O157: H7 isolate carried stx1, stx2, eaeA and hylA genes while E. coli O157 isolate obtained from the MAP cubed meat only carried the stx2 gene. In antibiogram test, both E. coli O157 isolates were resistant to streptomycin and one E. coli O157: H7 isolate was resistant to streptomycin, cephalothin and tetracycline. As a consequence; in order to protect public health, products should be kept in proper hygienic and technical conditions during sale and storage and use of uncontrolled antibiotics should be avoided.


2010 ◽  
Vol 76 (24) ◽  
pp. 7949-7956 ◽  
Author(s):  
S. Zhao ◽  
S. R. Young ◽  
E. Tong ◽  
J. W. Abbott ◽  
N. Womack ◽  
...  

ABSTRACT The emergence of antimicrobial resistance in Campylobacter spp. has been a growing public health concern globally. The objectives of this study were to determine the prevalence, antimicrobial susceptibility, and genetic relatedness of Campylobacter spp. recovered by the National Antimicrobial Resistance Monitoring System (NARMS) retail meat program. Retail meat samples (n = 24,566) from 10 U.S. states collected between 2002 and 2007, consisting of 6,138 chicken breast, 6,109 ground turkey, 6,171 ground beef, and 6,148 pork chop samples, were analyzed. A total of 2,258 Campylobacter jejuni, 925 Campylobacter coli, and 7 Campylobacter lari isolates were identified. Chicken breast samples showed the highest contamination rate (49.9%), followed by ground turkey (1.6%), whereas both pork chops and ground beef had <0.5% contamination. The most common resistance was to doxycycline/tetracycline (46.6%), followed by nalidixic acid (18.5%), ciprofloxacin (17.4%), azithromycin and erythromycin (2.8%), telithromycin (2.4%), clindamycin (2.2%), and gentamicin (<0.1%). In a subset of isolates tested, no resistance to meropenem and florfenicol was seen. C. coli isolates showed higher resistance rates to antimicrobials, with the exception of doxycycline/tetracycline, than those seen for C. jejuni. Pulsed-field gel electrophoresis (PFGE) fingerprinting resulted in 1,226 PFGE profiles among the 2,318 isolates, with many clones being widely dispersed throughout the 6-year sampling period.


1994 ◽  
Vol 57 (8) ◽  
pp. 734-736 ◽  
Author(s):  
ALOYSIO M. F. CERQUEIRA ◽  
ANITA TIBANA ◽  
TANIA A. T. GOMES ◽  
BEATRIZ E. C. GUTH

A total of 1,066 Escherichia coli colonies isolated from 105 raw bovine meat samples purchased at supermarkets in Rio de Janeiro were submitted to hybridization assays with gene probes for LT-II and STb enterotoxins. Five colonies comprising four different E. coli strains isolated from four pieces of beef, two samples of ground beef (5.7%) and two hamburger patties (5.7%) hybridized with the LT-II probe, while no hybridization occurred with the STb probe. Expression of LT-II enterotoxin using the Y1 adrenal cell assay was verified in two of four E. coli strains. A serotype diversity existed among LT-II E. coli strains.


2020 ◽  
Author(s):  
Hanh Vu ◽  
Cornelia Appiah-Kwarteng ◽  
Kaori Tanaka ◽  
Ryuji Kawahara ◽  
Diep Thi Khong ◽  
...  

Abstract Background: The dissemination of colistin-resistant bacteria carrying the colistin-resistant mobile gene, mcr-1 threatens medical care worldwide. In particular, contamination of food with colistin-resistant bacteria accelerates the community dissemination of colistin-resistant bacteria. Therefore, monitoring of colistin-resistant bacteria in food is important for controlling resistant bacteria. Unfortunately, the conventional culture methods for detecting colistin-resistant bacteria are not practical for monitoring food saftey. Therefore, development of a simple and rapid method to detect food contamination with colistin-resistant bacteria is desirable as an effective means for preventing the dissemination of resistant bacteria, particularly colistin-resistant bacteria.Findings: We developed a simple and rapid method for detecting Escherichia coli harboring the mcr-1 colistin resistance gene using a high-speed real-time polymerase chain reaction (PCR). The entire procedure, from sample processing to finals results, was performed within one hour. The practical utility of this method was verified by analyzing 27 retail meat samples for the presence of colistin-resistant bacteria. The results of the developed method were in agreement with the results of culturing colistin-resistant E. coli from the meat samples, demonstrating its efficacy and usefulness.Conclusions: A simple and rapid real-time PCR-based screening method was developed for detecting E. coli harboring mcr-1 in food samples. The practical utility of the procedure was confirmed using retail meat samples, indicating its potential as a convenient and rapid method to detect bacterial contamination of food items, especially in developing communities.


2020 ◽  
Vol 367 (15) ◽  
Author(s):  
Yuki Wakabayashi ◽  
Tsuyoshi Sekizuka ◽  
Takahiro Yamaguchi ◽  
Akira Fukuda ◽  
Masato Suzuki ◽  
...  

ABSTRACT The emergence of plasmid-mediated colistin resistance genes (mcr), which is occurring in numerous countries, is a worldwide concern, primarily because colistin is a last-resort antibiotic. Compared to E. coli, prevalence of mcr genes in Salmonella is unclear in Japan. Here we screened for mcr-1–5 genes in our collection of Salmonella strains isolated from retail meat products collected in Japan from 2012 through 2016. We found that Salmonella Albany strain 27A-368 encodes mcr-5 and that mcr genes were undetectable among the remaining 202 isolates. The resistance plasmid p27A-368 was transferred by conjugation to S. Infantis and was stably retained as a transconjugant. Whole-genome sequencing revealed that mcr-5 resided on a 115 kb plasmid (p27A-368). The plasmid backbone of p27A-368 is more similar to that of pCOV27, an ESBL-encoding plasmid recovered from avian pathogenic E. coli, rather than pSE13-SA01718 of S. Paratyphi B that encodes mcr-5. Further, mcr-5 is located on a transposon, and its sequence is similar to that of pSE13-SA01718. A phylogenetic tree based on single nucleotide variants implies a relationship between 27A-368 and S. Albany isolated in Southeast Asian countries.


2003 ◽  
Vol 69 (12) ◽  
pp. 7153-7160 ◽  
Author(s):  
Joshua R. Hayes ◽  
Linda L. English ◽  
Peggy J. Carter ◽  
Terry Proescholdt ◽  
Kyung Y. Lee ◽  
...  

ABSTRACT From March 2001 to June 2002, a total of 981 samples of retail raw meats (chicken, turkey, pork, and beef) were randomly obtained from 263 grocery stores in Iowa and cultured for the presence of Enterococcus spp. A total of 1,357 enterococcal isolates were recovered from the samples, with contamination rates ranging from 97% of pork samples to 100% of ground beef samples. Enterococcus faecium was the predominant species recovered (61%), followed by E. faecalis (29%), and E. hirae (5.7%). E. faecium was the predominant species recovered from ground turkey (60%), ground beef (65%), and chicken breast (79%), while E. faecalis was the predominant species recovered from pork chops (54%). The incidence of resistance to many production and therapeutic antimicrobials differed among enterococci recovered from retail meat samples. Resistance to quinupristin-dalfopristin, a human analogue of the production drug virginiamycin, was observed in 54, 27, 9, and 18% of E. faecium isolates from turkey, chicken, pork, and beef samples, respectively. No resistance to linezolid or vancomycin was observed, but high-level gentamicin resistance was observed in 4% of enterococci, the majority of which were recovered from poultry retail meats. Results indicate that Enterococcus spp. commonly contaminate retail meats and that dissimilarities in antimicrobial resistance patterns among enterococci recovered from different meat types may reflect the use of approved antimicrobial agents in each food animal production class.


2020 ◽  
Vol 103 (1) ◽  
pp. 161-175
Author(s):  
Dane Brooks ◽  
Benjamin Bastin ◽  
Erin Crowley ◽  
James Agin ◽  
Mike Clark ◽  
...  

Abstract Background: The iQ-Check Real-Time PCR kits use PCR technology based on gene amplification and detection by a real-time PCR thermalcycler for the detection of target analytes in select food matrices. The iQ-Check E. coli O157:H7 [Performance Tested MethodSM (PTM) 020801] and STEC VirX and STEC SerO (combined PTM 121203) methods were previously validated for different matrices under different enrichment schemes. Objective: To modify the current iQ-Check E. coli O157:H7 Kit for the detection of Escherichia coli O157:H7 from 25 to 375 g for raw ground beef (17% fat), raw beef trim, and fresh spinach. In addition, a matrix extension was validated for iQ-Check E. coli O157:H7 for raw chicken breast without skin (25 g), raw chicken thigh with skin (25 g), mechanically separated chicken (25 g), and raw ground pork (25 g). The study also included the modification of the iQ-Check STEC VirX and SerO Kits for the detection of non-O157 Shiga toxin–producing E. coli (STEC) for raw ground beef (375 g), raw beef trim (375 g), and fresh spinach (375 g) from STEC Enrichment Broth to buffered peptone water (BPW). All tests were carried out at 8–22 h (10–22 h for fresh spinach). Methods: Ground beef, beef trim, and spinach were co-inoculated with E. coli O157:H7, non-O157 STECs, and Salmonella spp. and analyzed for E. coli O157:H7 and non-O157 STECs after an 8-22 h enrichment in BPW for the beef matrices and after a 10–22 h enrichment in BPW for spinach. The chicken matrices were inoculated with E. coli O157:H7 only and analyzed after an 8–22 h enrichment in BPW. The iQ-Check Free DNA Removal Solution workflow was utilized for all matrices. Confirmations at the 22 h time point and method comparisons were conducted with the appropriate reference method as outlined in the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 4A or the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapters 5.09 and 5B.05. For the iQ-Check STEC VirX and STEC SerO Kits, inclusivity and exclusivity were also performed. Results: The two inclusivity and exclusivity evaluations indicated that the test methods can accurately detect the target analytes and correctly excluded nontarget organisms after 8 h of enrichment. In the method comparison study, the iQ-Check E. coli O157:H7 and STEC VirX and STEC SerO test kits demonstrated no statistically significant differences between candidate and reference method results or between presumptive and confirmed results for all food matrices analyzed and the two time points (8 or 10 and 22 h). Both time points produced the same results, with no discrepancies. Conclusions: The iQ-Check real-time PCR kits are effective methods for the detection of E. coli O157 and non-O157 STECs (both the virulence factors and the O groups) from raw ground beef, raw beef trim, and fresh spinach in 375 g samples enriched in BPW for 8–22 h (10–22 h for fresh spinach). In addition, the iQ-Check E. coli O157 Kit is effective in detecting E. coli O157 in 25 g samples of raw chicken breast without skin, raw chicken thigh with skin, mechanically separated chicken, and raw ground pork. The iQ-Check test kits allow the end user to pair enrichments for multiple target analytes, allowing the user to prepare a single enrichment and perform a single DNA extraction. The Free DNA Removal Solution removes free DNA from samples prior to PCR analysis, protecting DNA from intact and living cells. Highlights: The method modifications were granted based on the data collected.


2008 ◽  
Vol 71 (10) ◽  
pp. 2082-2086 ◽  
Author(s):  
LUCIANO BENEDUCE ◽  
GIUSEPPE SPANO ◽  
ARI Q. NABI ◽  
FRANCESCO LAMACCHIA ◽  
SALVATORE MASSA ◽  
...  

In this study, 100 raw meat samples were collected from 15 local Moroccan butcheries in five different areas of the city of Rabat during a period of 4 months. Overall, 7 of 15 butcheries from three areas of the city yielded strains of Escherichia coli O157. Single isolates from 9 (9%) of 100 raw meat samples were biochemically and serologically confirmed as E. coli O157. Using molecular techniques, two strains were positive for the Shiga toxin, with two additional strains containing an attaching-effacing gene. All potentially virulent serotypes isolated from these meat samples showed distinct pulsed-field gel electrophoresis profiles. Based on antibiotic susceptibility testing, more than 70% of the isolates were resistant to ampicillin and clavulanic acid–amoxicillin. Moreover, one strain was resistant to more than three antibiotics. Our study represents the first survey of E. coli O157 and related serotypes in raw meat products in Morocco.


2001 ◽  
Vol 84 (3) ◽  
pp. 752-760 ◽  
Author(s):  
Yvette M Henry ◽  
Nandini Natrajan ◽  
Wendy F Lauer

Abstract A method for detection of Escherichia coli O157 in beef and poultry is presented. The method is antibody-based and uses a patented antibody-specific metal-plating procedure for the detection of E. coli O157 in enriched meat samples. Both raw ground beef and raw ground poultry were tested as matrixes for the organism. The sensitivity and specificity of the assay were 98 and 90%, respectively. The accuracy of the assay was 96%. Overall, the method agreement between the E. coli O157 Detex assay and the U.S. Department of Agriculture/Food Safety Inspection Service method was 96%. Sample temperature upon loading of the apparatus was critical to the observed false-positive rate of the system.


Sign in / Sign up

Export Citation Format

Share Document