scholarly journals Microbiological Quality and Safety of Retail Chicken and Beef Products in Lebanon

Author(s):  
J. Yammine ◽  
L. Karam

Background: Controlling and reducing the food-borne illnesses remain one of the most challenging problems encountered by food authorities worldwide. This study was conducted to assess the microbiological quality of chicken breast, chicken liver, local and imported offal, and ground beef meat products sold in the Lebanese retail market. Methods: Thirty-five chicken breast and liver samples produced by ISO 22000 certified and non-certified companies were purchased from the market. Chicken samples were tested for Total Aerobic Count (TAC), Total Coliforms (TC), Staphylococcus aureus, Salmonella spp., and Listeria monocytogenes. Twenty offal and ground beef meat samples were collected as sold in bulk from the market and were analyzed for Escherichia coli O157:H7. Statistical analysis was performed using SPSS statistical software v. 23.0. Results: The results showed that 20, 100, 20, 80, and 0% of the analyzed chicken breast samples were rejected for TAC, TC, S. aureus, Salmonella spp., and L. monocytogenes, respectively. For chicken liver samples, 100% of the samples were rejected for TC and Salmonella spp., while all the samples were accepted for TAC, S. aureus, and L. monocytogenes. E. coli O157:H7 was absent in all meat samples. Conclusion: Some chicken samples from both certified and non-certified suppliers exceeded the standard upper limits showing hygienic concerns; whereas meat products were safe for consumption regarding the pathogenic E. coli O157:H7.

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S25-S26
Author(s):  
Reina Yamaji ◽  
Julia Rubin ◽  
Cindy Friedman ◽  
Patrick McDermott ◽  
Melody Hung-Fan ◽  
...  

Abstract Background Escherichia coli causes approximately 80% of community-acquired UTI (CA-UTI), but the sources of these uropathogenic E. coli infections are not well established. Recent studies have suggested that food, especially poultry, may serve as a source of UPEC. Here we prospectively examined E. coli isolates from patients with CA-UTI and retail meat concurrently available from the same geographic region to determine the frequency of shared genotypes. Methods Between September 2016 and May 2017, we collected urine samples from patients with UTI examined at a university-affiliated healthcare center. During the same time, we recovered E.coli from retail meat products (chicken breast, ground turkey, ground beef, and pork chops) collected as part of the National Antimicrobial Resistance Monitoring System (NARMS) FDA retail meat sampling program in Northern California. Urine samples and buffered peptone water containing meat samples were cultured on MacConkey agar. Lactose-positive and indole-positive colonies were presumptively identified as E coli. Bacterial DNA was extracted by a freeze-boil method. E. coli isolates were genotyped by multilocus sequence typing (MLST). Results Of 1020 urine samples, E. coli was isolated from 210 (21%). Five pandemic MLST genotypes (ST95, ST127, ST69, ST73, and ST131) accounted for 126 (60%) isolates. Of 200 meat samples, E. coli was isolated from 76 (38%). E. coli was isolated from 29 (73%) of 40 ground turkey samples, 34 (43%) of 80 chicken breast, 7 (18%) of 40 ground beef, and 6 (15%) of 40 pork chop. ST69 and ST131 were isolated from 3 chicken samples. Other genotypes of E. coli isolates from meat samples and CA-UTI included ST10 (3), ST38 (2), ST88 (1), ST117 (5), ST906 (1), and ST1844 (1). Eleven (32%) of 34 chicken samples contained UPEC strains, compared with 4 (14%) of 29 ground turkey samples, and 1 (17%) of 6 pork chop samples; no beef samples contained UPEC strains. Conclusion Overall, we found that nearly one-quarter of retail poultry products that we tested contained UPEC strains with the same MLST genotypes found in CA-UTI patients. Foodborne transmission may account for a substantial proportion of CA-UTI. Additional studies are needed to demonstrate transmission of these genotypes from poultry to patients and to target possible prevention measures. Disclosures All authors: No reported disclosures.


Author(s):  
Özgür Çadırcı ◽  
Ali Gücükoğlu ◽  
Göknur Terzi Güzel ◽  
Tolga Uyanık ◽  
Abdulaziz Abdulahi ◽  
...  

Shiga-like toxin producing Escherichia coli is still an important public issue which causes extremely dangerous health problems. This study was planned in order to examine the inhibitory effect of Modified Atmosphere Packaging application on E. coli O157 and O157: H7. The purposes of the present study were to detect E. coli O157 and O157: H7 strains from ground and cubed beef. A total of 100 MAP cattle meat products (50 minced meat, 50 meat cubes) were collected from the markets and butchers in Samsun province between May and October 2013. According to results, 1(1/50-2%) E. coli O157 and 1(1/50-2%) E. coli O157: H7 strains isolated from 50 ground beef samples, while 1 (1/50-2%) E. coli O157 strain was identified from 50 cubed beef samples. It was determined that E. coli O157 isolate obtained from the MAP ground beef carried stx1, stx2 genes; E. coli O157: H7 isolate carried stx1, stx2, eaeA and hylA genes while E. coli O157 isolate obtained from the MAP cubed meat only carried the stx2 gene. In antibiogram test, both E. coli O157 isolates were resistant to streptomycin and one E. coli O157: H7 isolate was resistant to streptomycin, cephalothin and tetracycline. As a consequence; in order to protect public health, products should be kept in proper hygienic and technical conditions during sale and storage and use of uncontrolled antibiotics should be avoided.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1543 ◽  
Author(s):  
Issmat I. Kassem ◽  
Nivin A Nasser ◽  
Joanna Salibi

Meat is an important source of high biological value proteins as well as many vitamins and minerals. In Lebanon, beef meats, including raw minced beef, are among the most consumed of the meat products. However, minced beef meat can also be an important source of foodborne illnesses. This is of a major concern, because food safety in Lebanon suffers from well-documented challenges. Consequently, the prevalence and loads of fecal coliforms and Escherichia coli were quantified to assess the microbiological acceptability of minced beef meat in Lebanon. Additionally, antibiotic resistance phenotypes of the E. coli were determined in response to concerns about the emergence of resistance in food matrices in Lebanon. A total of 50 meat samples and 120 E. coli isolates were analyzed. Results showed that 98% and 76% of meat samples harbored fecal coliforms and E. coli above the microbial acceptance level, respectively. All E. coli were resistant to at least one antibiotic, while 35% of the isolates were multidrug-resistant (MDR). The results suggest that Lebanon needs to (1) update food safety systems to track and reduce the levels of potential contamination in important foods and (2) implement programs to control the proliferation of antimicrobial resistance in food systems.


2004 ◽  
Vol 67 (2) ◽  
pp. 246-251 ◽  
Author(s):  
ROLANDO A. FLORES

Beef-processing equipment can be contaminated with pathogens such as Escherichia coli O157:H7 and Salmonella spp. The bowl cutter has wide application in particle-size reduction and blending of meat products. This study was undertaken to determine (i) the distribution patterns of E. coli O157:H7 in equipment components and ground beef produced with a table-top bowl cutter under different operational conditions and (ii) the likelihood that pathogen contamination can be transferred to subsequent batches after a batch of beef contaminated with E. coli O157:H7 has been processed in the same bowl cutter. A beef trim (44.6 ± 29.5 g) inoculated with 2 log CFU of an E. coli O157:H7 mutant strain resistant to rifampicin ( E. coli O157:H7rif) was fed by hand into an uncontaminated beef-trim batch under two different batch sizes (2 and 4 kg), three processing times (60, 120, and 240 s), and two feeding modes (running and stoppage fed). There were no significant differences (P ≥ 0.05) among all the treatments for the averages of the counts of E. coli O157:H7rif distributed in the ground beef. Regardless of the processing time and the method used to feed the beef trims into the bowl cutter, the whole batch and the following subsequent batch became contaminated when previously contaminated beef was processed. Areas of the bowl cutter most likely to be contaminated with E. coli O157:H7 were (i) the material left on the top of the comb/knife guard and (ii) the knife. Material that overflowed the bowl cutter, when processing the batch with E. coli O157:H7rif, contaminated the equipment surroundings. A Pearson V probability distribution function was determined to describe the distribution of pathogenic organisms in the ground beef, a distribution that can also be applied when conducting process risk analyses on mixing-particle reduction operations for beef trims.


2021 ◽  
pp. 2827-2832
Author(s):  
Yaser H. Tarazi ◽  
Saeb N. El-Sukhon ◽  
Zuhair Bani Ismail ◽  
Amani A. Almestarehieh

Background and Aim: Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen with worldwide distribution. Data regarding its presence, distribution, virulence, and antimicrobial susceptibility among various animal species and humans in Jordan are lacking. Therefore, the objectives of this study were to isolate and characterize EHEC from human and animal diarrhea fecal samples and ground beef samples. Materials and Methods: A total of 100 and 270 diarrhea fecal samples from humans and animals, respectively, were collected. In addition, 40 ground beef meat samples were collected from retail markets. EHEC was positively identified by detecting Shiga toxins (stx1 and stx2) genes using multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility patterns were determined using the disk diffusion test. Beta-lactamase production was detected using the double disk diffusion test and the extended-spectrum beta-lactamases (ESBLs) were identified by detection of blaTEM, blaSHV, and OXA-1 genes using multiplex PCR. Pulsed-field gel electrophoresis (PFGE) was used to investigate the relatedness of EHEC isolates from different sources. Results: Out of 410 samples, 194 E. coli isolates were positively identified, of which 57 isolates (29%) were classified as EHEC. Thirty-five (61%) of EHEC isolates were serotyped as O157 (19: O157:H7 and 16: O157:NM). The stx1 gene was detected only among the sheep and goats isolates at a rate of 7.6% and 5.2%, respectively, while the stx2 gene was detected in only one ground beef meat sample. EHEC isolates showed high resistance patterns against amoxicillin, gentamycin, cephalexin, and doxycycline. Twenty-four out of 32 EHEC isolates were determined as ESBL producers, among which 14 isolates expressed the blaSHV gene and 19 isolates expressed the blaTEM while four expressed both genes. PFGE analysis revealed two clusters with high similarity (92%) originated from ground beef meat and cattle fecal samples. No similarities were found between human and animal E. coli isolates. Conclusion: Results of this study indicate widespread ESBL EHEC among humans, animals, and ground beef meat samples. These results represent an important alarm that requires the implementation of appropriate preventative measures by both human and animal health sectors to prevent the transmission of this important foodborne pathogen.


2018 ◽  
Vol 81 (11) ◽  
pp. 1838-1843
Author(s):  
H. W. KIM ◽  
N. H. KIM ◽  
T. J. CHO ◽  
S. M. PARK ◽  
S. H. KIM ◽  
...  

ABSTRACT A total of 364 samples of vegetable- and meat-based meals were collected at three processing steps: step I, preparation of raw ingredients; step II, processing and cooking; and step III, finished meals. Microbiological quality was evaluated by using data for the prevalence and concentration of the aerobic plate counts, total coliforms (TC), fecal coliforms (FC), and Escherichia coli. The data were analyzed for differences between cafeterias, seasons, raw materials, and processing steps. Fourteen (15.2%) of the 92 finished meal samples were microbiologically unsatisfactory. Neither cafeteria nor season was significantly associated with microbiological quality (P > 0.05). However, the type of raw ingredients and processing steps were significantly associated with differences in microbiological quality. Vegetable-based meals had higher TC concentrations than meat-based meals because salad and seasoned and fermented vegetables are not cooked, unlike heat-processed meat products. Microbial counts tended to decrease through the processing steps, and E. coli, which could only be enumerated on uncooked chicken breast (1.6 log CFU/g) and sliced pork (2.6 log CFU/g), was totally eliminated by boiling and roasting. However, the presence of FC was not completely eliminated, even by cooking, and so this group of organisms should be considered as an important indicator of hygienic meal preparation in cafeterias. Although pathogenic E. coli was not isolated in this study, continuous microbiological monitoring of composite foods served in cafeterias should be performed as the presence of TC and FC in finished meals indicates the potential for contamination by pathogenic E. coli.


1994 ◽  
Vol 57 (8) ◽  
pp. 734-736 ◽  
Author(s):  
ALOYSIO M. F. CERQUEIRA ◽  
ANITA TIBANA ◽  
TANIA A. T. GOMES ◽  
BEATRIZ E. C. GUTH

A total of 1,066 Escherichia coli colonies isolated from 105 raw bovine meat samples purchased at supermarkets in Rio de Janeiro were submitted to hybridization assays with gene probes for LT-II and STb enterotoxins. Five colonies comprising four different E. coli strains isolated from four pieces of beef, two samples of ground beef (5.7%) and two hamburger patties (5.7%) hybridized with the LT-II probe, while no hybridization occurred with the STb probe. Expression of LT-II enterotoxin using the Y1 adrenal cell assay was verified in two of four E. coli strains. A serotype diversity existed among LT-II E. coli strains.


Author(s):  
Aiada Daw Mohamed

This cross sectional study was carried out during a four months period from December, 2012 to March, 2013. A total of 140 fresh and frozen ground beef samples were purchased from local butchers and supermarkets in Alexandria. Each of the ground beef sample was analyzed for its microbiological quality (Aerobic plate count, total coliform count and E. coli count) as well as for the presence of E. coli O157:H7. Out of the 140 studied ground meat samples, 75(53.6%) proved to be unsatisfactory according to the three tested parameters. None out of 140 examined ground meat samples showed E. coli O157:H7.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-10
Author(s):  
Naeima M. H. Yousef ◽  
Doaa M. Abd El- Aziz ◽  
Martina A. Mansour

Foodborne pathogenic bacteria are causing diseases with a significant effect on human health and the economy. The four most common bacterial foodborne pathogens were isolated from different fermented meat products and characterized molecularly in the current study. A total of 20 random samples of fermented meat products, including Hotdog, pepperoni, salami, sausage, and luncheon (4 from each), were collected from different markets to be examined bacteriologically for detection of foodborne pathogenic bacteria. The samples were tested by culture for the presence of bacteria. PCR was used as a diagnostic tool for the proper identification of foodborne pathogenic bacteria. So, the pure isolates were identified and confirmed by PCR- based method using specific primers for each genus. The isolated pathogenic bacteria were identified as Escherichia coli 0157:H7, Listeria monocytogenes, Salmonella sp. and Staphylococcus aureus. Out of 20 samples, only one sample contains E. coli 0157:H7. Listeria monocytogenes and Salmonella spp. were isolated from two samples. At the same time, S. aureus was found in 6 samples, one of which was mecA positive. The results revealed the presence of foodborne pathogenic bacteria in fermented meat samples. So, to decrease the human hazard risk and a major public health threat associated with foodborne pathogenic bacteria and their toxins, a greater emphasis should be applied in control and prevention of contamination during processing and manipulation.


2019 ◽  
Vol 12 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Koesnoto Soepranianondo ◽  
Dhandy Koesoemo Wardhana ◽  
Budiarto ◽  
Diyantoro

Aim: This research aimed to analyze the presence of microbial contamination and antibiotic residue in beef meat from city slaughterhouses in East Java Province, Indonesia. Materials and Methods: A total of 40 samples from city slaughterhouses were used in this study. The tests for microbial contamination used several methods including total plate count (TPC), most probable number of Escherichia coli, detection of Staphylococcus aureus using Mannitol Salt Agar media, Salmonella spp. detection using Bismuth Sulfite Agar media and Triple Sugar Iron Agar media, and detection of the antibiotic residue by screening tests. Results: Most of the samples were contaminated with E. coli (32.5% positive samples) and S. aureus (20.0% positive samples). The mean values of TPC and S. aureus contamination were lower than the maximum limit of contamination, which were 41.58 CFU/g and 13.93 CFU/g, respectively, while the mean value of E. coli contamination was 27.03 CFU/g which was higher than the maximum limit. A low frequency of TPC (5% positive samples) and Salmonella spp. contamination (2.5% positive samples) was found in meat samples. Meat samples from two of the surveyed slaughterhouses were tested positive for antibiotic residue and six of the 40 samples (15%) were also tested positive for the antibiotic residue. Conclusion: It was concluded that most of the microbial contamination in beef meat from city slaughterhouses was below the maximum limit of contamination and only two slaughterhouses were found antibiotic residues in the meat samples.


Sign in / Sign up

Export Citation Format

Share Document