Performing with Structure

2020 ◽  
pp. 287-331
Author(s):  
Daphne Leong

This chapter poses the question of how one synthesizes analysis and performance. Its centerpiece is Leathwood’s analysis of local frictions and long-range connections in the pitch structure of Carter’s Changes; his demonstration of their embodiment in guitaristic timbres, tactile shapes, and kinesthetic moves; and his modeling of how such knowledge might be internalized to inspire vital and free performances. “Improvising Changes: Exercises for Guitarists” and an accompanying video provide practical applications. Leong’s Prelude and Postlude frame Leathwood’s material and highlight how a “third culture” of analysis and performance can be inhabited and passed on—modeled and taught in studio and classroom.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2231
Author(s):  
Alencar Franco de Souza ◽  
Fernando Lessa Tofoli ◽  
Enio Roberto Ribeiro

This work presents a review of the main topologies of switched capacitors (SCs) used in DC-DC power conversion. Initially, the basic configurations are analyzed, that is, voltage doubler, series-parallel, Dickson, Fibonacci, and ladder. Some aspects regarding the choice of semiconductors and capacitors used in the circuits are addressed, as well their impact on the converter behavior. The operation of the structures in terms of full charge, partial charge, and no charge conditions is investigated. It is worth mentioning that these aspects directly influence the converter design and performance in terms of efficiency. Since voltage regulation is an inherent difficulty with SC converters, some control methods are presented for this purpose. Finally, some practical applications and the possibility of designing DC-DC converters for higher power levels are analyzed.


Author(s):  
Xiaohua Li ◽  
Feitian Ran ◽  
Fan Yang ◽  
Jun Long ◽  
Lu Shao

AbstractA growing family of two-dimensional (2D) transition metal carbides or nitrides, known as MXenes, have received increasing attention because of their unique properties, such as metallic conductivity and good hydrophilicity. The studies on MXenes have been widely pursued, given the composition diversity of the parent MAX phases. This review focuses on MXene films, an important form of MXene-based materials for practical applications. We summarized the synthesis methods of MXenes, focusing on emerging synthesis strategies and reaction mechanisms. The advanced assembly technologies of MXene films, including vacuum-assisted filtration, spin-coating methods, and several other approaches, were then highlighted. Finally, recent progress in the applications of MXene films in electrochemical energy storage, membrane separation, electromagnetic shielding fields, and burgeoning areas, as well as the correlation between compositions, architecture, and performance, was discussed.


2019 ◽  
Vol 94 ◽  
pp. 01012 ◽  
Author(s):  
Irwan Gumilar ◽  
Brian Bramanto ◽  
Fuad F. Rahman ◽  
I Made D. A. Hermawan

As the modernized Global Navigation Satellite System (GNSS) method, Real Time Kinematic (RTK) ensures high accuracy of position (within several centimeters). This method uses Ultra High Frequency (UHF) radio to transmit the correction data, however, due to gain and power issues, Networked Transport of RTCM via Internet Protocol (RTCM) is used to transmit the correction data for a longer baseline. This Research aims to investigate the performance of short to long-range single baseline RTK GNSS (Up to 80 KM) by applying modified LAMBDA method to resolve the ambiguity in carrier phase. The RTK solution then compared with the differential GNSS network solution. The results indicate that the differences are within RTK accuracy up to 80 km are several centimeter for horizontal solution and three times higher for vertical solution.


Author(s):  
Harold A. Weaver ◽  
Jorge I. Núñez ◽  
Howard W. Taylor ◽  
John R. Hayes ◽  
Andrew F. Cheng ◽  
...  

Author(s):  
Kenneth W. Van Treuren

The gas turbine industry is experiencing growth in many sectors. An important part of teaching a gas turbine course is exposing students to the practical applications of the gas turbine. This laboratory proposes an opportunity for students to view an operating gas turbine engine in an aircraft propulsion application and to model the engine performance. A Pratt and Whitney PT6A-20 turboprop was run at a local airfield and engine parameters typical of cockpit instrumentation were taken. The students, in teams of two, then modeled the system using the software PARA and PERF in an attempt to match the manufacturer’s specifications. This laboratory required students to research the parameters necessary to model this engine that were not part of the data set provided by the manufacturer. The research and modeling encompassed areas such as technology level, efficiencies, fuel consumption, and performance. The end result was a two-page report containing the students’ calculations comparing the actual performance of the engine with the manufacturer’s specifications. Supporting graphs and figures were included as appendices. The same type laboratory could be adapted for co-generation gas turbines. Over 121 colleges and universities have co-generation facilities on campus and that presents a unique opportunity for the students to observe the operation of a land-based gas turbine used for power generation. A 5 MW TB5000 manufactured by Ruston (Alstom) Gas Engines is available on the Baylor University campus and is highlighted as an example. Potential problems encountered with using the Baylor University gas turbine are discussed which include lack of appropriate engine instrumentation.


2012 ◽  
Vol 535-537 ◽  
pp. 2438-2441
Author(s):  
Jun Ping Zhuang ◽  
Xue Ping Li

Cornstalk, among the agricultural residues and other non-wood fiber, is a more promising source of lignocellulosic materials for bioethanol production. Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Kinetic models can have practical applications for the optimization of the process and performance analysis, or economic estimations, so investigate the cornstalk hydrolysis kinetics is necessary. In this paper, effects of temperature and time on cornstalk hydrolysis in saturated formic acid with 4% hydrochloric acid solution reaction kinetics have been investigated. The results showed that the hydrolysis velocities of cornstalk were 0.021 h−1 at 60 °C, 0.0302 h−1 at 65 °C and 0.060 h−1 at 70 °C, the degradation velocities of glucose were 0.061 h−1 at 60 °C, 0.0845 h−1 at 65 °C, and 0.24 h−1 at 70 °C, the activation energy of cornstalk hydrolysis was 99.60 kJ/mol, and the activation energy of glucose degradation was130.94 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document