Cultural Neuroscience

Author(s):  
Joan Y. Chiao ◽  
Katherine D. Blizinsky

Cultural neuroscience is a research field that investigates the mutual influences of cultural and biological sciences on human behavior. Research in cultural neuroscience demonstrates cultural influences on the neurobiological mechanisms of processes of the mind and behavior. Culture tunes the structure and functional organization of the mind and the nervous system, including processes of emotion, cognition, and social behavior. Environmental and developmental approaches play an important role in the emergence and maintenance of culture. Culture serves as an evolutionary adaptation, protecting organisms from environmental conditions across geography. Cultural variation in the human mind, brain, and behavior serves to build and reinforce culture throughout the life course. This chapter examines the theoretical, methodological, and empirical foundations of cultural neuroscience and its implications for research in population health disparities and global mental health.

The research incorporated encircles the interdisciplinary theory of cognitive science in the branch of artificial intelligence. It has always been the end goal that better understanding of the idea can be guaranteed. Besides, a portion of the real-time uses of cognitive science artificial intelligence have been taken into consideration as the establishment for more enhancements. Before going into the scopes of future, there are many complexities that occur in real-time which have been uncovered. Cognitive science is the interdisciplinary, scientific study of the brain and its procedures. It inspects the nature, the activities, and the elements of cognition. Cognitive researchers study intelligence and behavior, with an emphasis on how sensory systems speak to, process, and change data. Intellectual capacities of concern to cognitive researchers incorporate recognition, language, memory, alertness, thinking, and feeling; to comprehend these resources, cognitive researchers acquire from fields, for example, psychology, artificial intelligence, philosophy, neuroscience, semantics, and anthropology. The analytic study of cognitive science ranges numerous degrees of association, from learning and choice to logic and planning; from neural hardware to modular mind organization. The crucial idea of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."


Author(s):  
Alvaro Pascual-Leone ◽  
Adolfo Plasencia

In this dialogue, the Harvard neuroscientist, Alvaro Pascual-Leone initially reflects on the importance of ‘unlearning’ and forgetting. He then gives a detailed explanation of, and how he carries out, transcraneal magnetic stimulation (TMS) and how he uses this technology to fight diseases, as well as explaining his experiments on inattentional blindness. He then discusses how the brain acts as a hypothesis generator and whether the brain, the mind and the soul are different things or not. Later reflect on the questions: Is the mind and what we are a consequence of the brain’s structure?  Do changes in the brain change our reality? And why are a person’s dreams important? Then he explains how freewill and decision-making work from the brain, and relates his vision of intelligence and where it may be generated from, explaining the differences between the mind and the brain. He finally reflects on what is known so far about the brain’s “dark energy” and the way we are continuously being surprised by the wonders of the brain's plasticity.


2019 ◽  
Vol 28 (3) ◽  
pp. 280-291 ◽  
Author(s):  
J. Benjamin Hutchinson ◽  
Lisa Feldman Barrett

In the last two decades, neuroscience studies have suggested that various psychological phenomena are produced by predictive processes in the brain. When considered together, these studies form a coherent, neurobiologically inspired program for guiding psychological research about the mind and behavior. In this article, we consider the common assumptions and hypotheses that unify an emerging framework and discuss the ramifications of such a framework, both for improving the replicability and robustness of psychological research and for renewing psychological theory by suggesting an alternative ontology of the human mind.


2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Ana Njegovanović

Tourism is a dynamic and competitive industry that requires the ability to constantly adapt to the changing needs and wishes of customers in the uncertain financial global environment posing the problem of attracting tourists. The aim of the paper is to research the involvement of neuroscience through cultural neuroscience, mirror neurons, neuroethics as a new approach to different aspects of tourism. We present the most important research in the field of tourism through existing literature, discuss the limitations of this approach and propose guidelines for future research. In a theoretical approach, given the specific tourist experiences, mirror neurons can contribute to explaining some important aspects of tourism. Investigations lead to a neurological context, where many modes are associated, the language utilizes a multimodal sensory motor system that includes the brain area (concept of empathy, characterization of the traditional anthropological relationship between the host and host of the Istrian region).Research on cultural neuroscience examines how cultural and genetic diversity shape the human mind, brain, and behavior in multiple time scales: state, ontogenesis, and phylogeny.We particularly emphasize the importance of medical tourism by including empirical research from different disciplines and ethical issues involving individual and population perspectives.


2019 ◽  
Author(s):  
Giwon Bahg ◽  
Daniel G. Evans ◽  
Matthew Galdo ◽  
Brandon Turner

The link between mind, brain, and behavior has mystified philosophers and scientists for millennia. Recent progress has been made by forming statistical associations between manifest variables of the brain (e.g., EEG, fMRI) and manifest variables of behavior (e.g., response times, accuracy) through hierarchical latent variable models (Turner, Forstmann, & Steyvers, 2019). Within this framework, one can make inferences about the mind in a statistically principled way, such that complex patterns of brain-behavior associations drive the inference procedure. However, previous approaches were limited in the flexibility of the linking function, which has proven prohibitive for understanding the complex dynamics exhibited by the brain. In this article, we propose a data-driven, non-parametric approach that allows complex linking functions to emerge from fitting a hierarchical latent representation of the mind to multivariate, multimodal data. Furthermore, to enforce biological plausibility, we impose both spatial and temporal structure so that the types of realizable system dynamics are constrained. To illustrate the benefits of our approach, we investigate the model’s performance in a simulation study and apply it to experimental data. In the simulation study, we verify that the model can be accurately fit to simulated data, and latent dynamics can be well recovered. In an experimental application, we simultaneously fit the model to fMRI and behavioral data from a continuous motion tracking task. We show that the model accurately recovers both neural and behavioral data, and reveals interesting latent cognitive dynamics. Finally, we provide a test of the model’s generalizability by assessing its predictive accuracy in a cross-validation test.


2020 ◽  
Vol 117 (47) ◽  
pp. 29398-29406 ◽  
Author(s):  
Giwon Bahg ◽  
Daniel G. Evans ◽  
Matthew Galdo ◽  
Brandon M. Turner

The link between mind, brain, and behavior has mystified philosophers and scientists for millennia. Recent progress has been made by forming statistical associations between manifest variables of the brain (e.g., electroencephalogram [EEG], functional MRI [fMRI]) and manifest variables of behavior (e.g., response times, accuracy) through hierarchical latent variable models. Within this framework, one can make inferences about the mind in a statistically principled way, such that complex patterns of brain–behavior associations drive the inference procedure. However, previous approaches were limited in the flexibility of the linking function, which has proved prohibitive for understanding the complex dynamics exhibited by the brain. In this article, we propose a data-driven, nonparametric approach that allows complex linking functions to emerge from fitting a hierarchical latent representation of the mind to multivariate, multimodal data. Furthermore, to enforce biological plausibility, we impose both spatial and temporal structure so that the types of realizable system dynamics are constrained. To illustrate the benefits of our approach, we investigate the model’s performance in a simulation study and apply it to experimental data. In the simulation study, we verify that the model can be accurately fitted to simulated data, and latent dynamics can be well recovered. In an experimental application, we simultaneously fit the model to fMRI and behavioral data from a continuous motion tracking task. We show that the model accurately recovers both neural and behavioral data and reveals interesting latent cognitive dynamics, the topology of which can be contrasted with several aspects of the experiment.


Neuroforum ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. A95-A100 ◽  
Author(s):  
Martin Heisenberg

Abstract How did the process of Darwinian evolution lead from dead matter to the human mind? Of this long, complicated process the present essay selects and discusses just one step, that from animal behavior to animal mind. The process of living has two aspects, the maintenance of the process in the organism and the interaction of the organism with the world. In animals the latter is organized as behavior. Behavior evolves, as it serves the fitness of the animal. The brain evolves because it improves the behavior in terms of the animal’s fitness. Given the richness of the world and the openness of the future, the organization of behavior can be indirect and most intricate. The animal mind can be understood as behavioral organization at a higher level, as metaorganization. This concept is documented by behavioral studies in a particular animal, the fly Drosophila.


2021 ◽  
Author(s):  
Ayelet Rosenberg ◽  
Manish Saggar ◽  
Peter Rogu ◽  
Aaron W. Limoges ◽  
Carmen Sandi ◽  
...  

AbstractThe brain and behavior are under energetic constraints, which are likely driven by mitochondrial energy production capacity. However, the mitochondria-behavior relationship has not been systematically studied on a brain-wide scale. Here we examine the association between mitochondrial health index and stress-related behaviors in mice with diverse mitochondrial and behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain function and mitochondrial DNA (mtDNA) content were deployed on 571 samples from 17 brain regions. We find specific patterns of mito-behavior associations that vary across brain regions and behaviors. Furthermore, multi-slice network analysis applied to our brain-wide mitochondrial dataset identified three large-scale networks of brain regions. A major network composed of cortico-striatal regions exhibits highest mitochondria-behavior correlations, suggesting that this mito-based network is functionally significant. Mito-based networks can also be recapitulated using correlated gene expression and structural connectome data, thereby providing convergent multimodal evidence of mitochondrial functional organization anchored in gene, brain and behavior.


2016 ◽  
Vol 4 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Melissa J. Allman ◽  
Trevor B. Penney ◽  
Warren H. Meck

Basic mechanisms of interval timing and associative learning are shared by many animal species, and develop quickly in early life, particularly across infancy, and childhood. Indeed, John Wearden in his book “The Psychology of Time Perception”, which is based on decades of his own research with colleagues, and which our commentary serves to primarily review, has been instrumental in implementing animal models and methods in children and adults, and has revealed important similarities (and differences) between human timing (and that of animals) when considered within the context of scalar timing theory. These seminal studies provide a firm foundation upon which the contemporary multifaceted field of timing and time perception has since advanced. The contents of the book are arguably one piece of a larger puzzle, and as Wearden cautions, “The reader is warned that my own contribution to the field has been exaggerated here, but if you are not interested in your own work, why would anyone else be?” Surely there will be many interested readers, however the book is noticeably lacking in it neurobiological perspective. The mind (however it is conceived) needs a brain (even if behaviorists tend to say “the brain behaves”, and most neuroscientists currently have a tenuous grasp on the neural mechanisms of temporal cognition), and to truly understand the psychology of time, brain and behavior must go hand in hand regardless of the twists, turns, and detours along the way.


Sign in / Sign up

Export Citation Format

Share Document