Sulfur Cycle

Author(s):  
Thomas S. Bianchi

Sulfur (S) is an important redox element in estuaries because of its linkage with biogeochemical processes such as SO42− reduction (Howarth and Teal, 1979; Jørgensen, 1982; Luther et al., 1986; Roden and Tuttle, 1992, 1993a,b; Miley and Kiene, 2004), pyrite (FeS2) formation (Giblin, 1988; Hsieh and Yang, 1997; Morse and Wang, 1997), metal cycling (Krezel and Bal, 1999; Leal et al., 1999; Tang et al., 2000), ecosystem energetics (King et al., 1982; Howarth and Giblin, 1983; Howes et al., 1984), and atmospheric S emissions (Dacey et al., 1987; Turner et al., 1996; Simo et al., 1997). The range of oxidations for S intermediates formed in each of these processes is between +VI and −II. Many of the important naturally occurring molecular species of S are shown in table 12.1. On a global scale, most of the S is located in the lithosphere; however, there are important interactions between the hydrosphere, biosphere, and atmosphere where important transfers of S occur (Charlson, 2000). For example, coal and biomass burning, along with volcano emissions inject SO2 into the atmosphere, which can then be further oxidized in the atmosphere and removed as SO42− in rainwater (Galloway, 1985). An example of biogenic sulfur formation is the reduction of seawater SO42− to sulfide by phytoplankton and eventual incorporation of the S into dimethylsulfoniopropionate (DMSP). DMSP, in turn, is converted to volatile dimethyl sulfide (DMS; CH3SCH3)m which is emitted to the atmosphere. In the seawater, SO42− represents one of the major ions, with concentrations that range from 24 to 28 mM, which is considerably higher than the concentrations found in freshwaters (∼0.1 mM). This marked difference makes seawater the major input to estuaries and sets up an important gradient in estuarine biogeochemical cycling. In this chapter, the focus will be on the nonanthropogenic biogenic transformations of S that are relevant to biogeochemical cycling in estuarine and coastal waters. Approximately 50% of the global flux of S to the atmosphere is derived from marine emissions of DMS. Oxidation of DMS in the atmosphere leads to production of SO42− aerosols, which can influence global climate patterns (Charlson et al., 1987; Andreae and Crutzen, 1997).

2016 ◽  
Author(s):  
Shan Zhou ◽  
Sonya Collier ◽  
Daniel A. Jaffe ◽  
Nicole L. Briggs ◽  
Jonathan Hee ◽  
...  

Abstract. Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) coupled with a thermodenuder at the Mt. Bachelor Observatory (MBO, ~ 2.8 km above sea level) to characterize the impact of wildfire emissions on aerosol loading and properties in the Pacific Northwest region of the United States. MBO represents a remote background site in the western U.S. and it is frequently influenced by transported wildfire plumes during summer. Very clean conditions were observed at this site during periods without BB influence where the 5-min average (±1σ) concentration of non-refractory submicron aerosols (NR-PM1) was 3.7 ± 4.2 μg m−3. Aerosol concentration increased substantially (reaching up to 210 µg m−3 of NR-PM1) for periods impacted by transported BB plumes and aerosol composition was overwhelmingly organic. Based on Positive Matrix Factorization (PMF) of the HR-AMS data, three types of BB organic aerosol (BBOA) were identified, including a fresh, semivolatile BBOA-1 (O/C = 0.35; 20 % of OA mass) that correlated well with ammonium nitrate, an intermediately oxidized BBOA-2 (O/C = 0.60; 17 % of OA mass), and a highly oxidized BBOA-3 (O/C = 1.06; 31 % of OA mass) that showed very low volatility with only ~ 40 % mass loss at 200 °C. The remaining 32 % of the organic aerosol (OA) mass was attributed to a boundary layer (BL) OOA (BL-OOA; O/C = 0.69) representing OA influenced by BL dynamics and a low-volatility oxygenated OA (LV-OOA; O/C = 1.09) representing regional free troposphere aerosol. The mass spectrum of BBOA-3 resembled that of LV-OOA and had negligible contributions from the HR-AMS BB tracer ions – C2H4O2+ (m/z = 60.021) and C3H5O2+ (m/z = 73.029). This finding highlights the possibility that the influence of BB emission could be underestimated in regional air masses where highly oxidized BBOA (e.g. BBOA-3) might be a significant aerosol component. We also examined OA chemical evolution for persistent BB plume events originating from a single fire source and found that longer solar radiation led to higher mass fraction of the chemically aged BBOA-2 and BBOA-3 and more oxidized aerosol. However, an analysis of the enhancement ratios of OA relative to CO (ΔOA/ΔCO) showed little difference between BB plumes transported primarily at night versus during the day, despite evidence of substantial chemical transformation in OA induced by photo-oxidation. These results indicate negligible net OA production with photo-oxidation for wildfire plumes observed in this study, for which a possible reason is that SOA formation was almost entirely balanced by BBOA volatilization.


2020 ◽  
Author(s):  
Chun-Yang Li ◽  
Xiu-Juan Wang ◽  
Xiu-Lan Chen ◽  
Qi Sheng ◽  
Shan Zhang ◽  
...  

AbstractDimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule and plays important roles in the global sulfur cycle. Cleavage of DMSP produces volatile dimethyl sulfide (DMS), which has impacts on the global climate. Multiple pathways for DMSP catabolism have been identified. Here we identified yet another novel pathway, the ATP DMSP lysis pathway. The key enzyme, AcoD, is an ATP-dependent DMSP lyase. AcoD belongs to the acyl-CoA synthetase superfamily, which is totally different from other DMSP lyases, showing a new evolution route. AcoD catalyses the conversion of DMSP to DMS by a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. AcoD is widely distributed in many bacterial lineages including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Firmicutes, revealing this new pathway plays important roles in global DMSP/DMS cycles.


Author(s):  
Shan Zhang ◽  
Hai-Yan Cao ◽  
Nan Zhang ◽  
Zhao-Jie Teng ◽  
Yang Yu ◽  
...  

Dimethylsulfoniopropionate (DMSP) is one of the most abundant organic sulfur compounds in the oceans, which is mainly degraded by bacteria through two pathways, a cleavage pathway and a demethylation pathway. Its volatile catabolites dimethyl sulfide (DMS) and methanethiol (MT) in these pathways play important roles in the global sulfur cycle and have potential influences on the global climate. Intense DMS/DMSP cycling occurs in the Arctic. However, little is known about the diversity of cultivable DMSP-catabolizing bacteria in the Arctic and how they catabolize DMSP. Here, we screened DMSP-catabolizing bacteria from Arctic samples and found that bacteria of four genera ( Psychrobacter , Pseudoalteromonas , Alteromonas and Vibrio ) could grow with DMSP as the sole carbon source, among which Psychrobacter and Pseudoalteromonas are predominant. Four representative strains ( Psychrobacter sp. K31L, Pseudoalteromonas sp. K222D, Alteromonas sp. K632G and Vibrio sp. G41H) from different genera were selected to probe their DMSP catabolic pathways. All these strains produce DMS and MT simultaneously during their growth on DMSP, indicating that all strains likely possess the two DMSP catabolic pathways. On the basis of genomic and biochemical analyses, the DMSP catabolic pathways in these strains were proposed. Bioinformatic analysis indicated that most bacteria of Psychrobacter and Vibrio have the potential to catabolize DMSP via the demethylation pathway, and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. This study provides novel insights into DMSP catabolism in marine bacteria. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in the oceans. The catabolism of DMSP is an important step of the global sulfur cycle. Although Gammaproteobacteria are widespread in the oceans, the contribution of Gammaproteobacteria in global DMSP catabolism is not fully understood. Here, we found that bacteria of four genera belonging to Gammaproteobacteria ( Psychrobacter , Pseudoalteromonas , Alteromonas and Vibrio ), which were isolated from Arctic samples, were able to grow on DMSP. The DMSP catabolic pathways of representative strains were proposed. Bioinformatic analysis indicates that most bacteria of Psychrobacter and Vibrio have the potential to catabolize DMSP via the demethylation pathway, and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. Our results suggest that novel DMSP dethiomethylases/demethylases may exist in Pseudoalteromonas , Alteromonas and Vibrio , and that Gammaproteobacteria may be important participants in marine, especially in polar DMSP cycling.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Wanyi Fu ◽  
Xihui Zhang

AbstractSince the detection of phosphine in the wastewater treatment plants in 1988, more and more investigations revealed that phosphine is closely related to ecological activities on a global scale. Here, we present perspectives on the whole dynamic cycles of phosphorus, particularly in terms of phosphine and its interactions with natural ecosystems, as well as the impacts from human activities. It may conclude that the phosphine-driving cycles of phosphorus depend on the coordination of human activities with natural ecosystems. Most importantly, the extensive recovery of phosphorus in numerous urban wastewater treatment plants may seriously obstruct its global cycles to catch up with the ecological needs in natural ecosystems. Phosphine gas plays an important role in the biogeochemical phosphorus cycle. Phosphorus might be one of the important elements participating in the global climate change together with carbon and nitrogen.


2016 ◽  
Vol 13 (2) ◽  
pp. 340 ◽  
Author(s):  
Michal Sela-Adler ◽  
Ward Said-Ahmad ◽  
Orit Sivan ◽  
Werner Eckert ◽  
Ronald P. Kiene ◽  
...  

Environmental context The volatile sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. Compared to marine environments, freshwater environments are under studied with respect to DMS cycling. The goal of this study was to assess the formation pathways of DMS in a freshwater lake using natural stable isotopes of sulfur. Our results provide unique sulfur isotopic evidence for the multiple DMS sources and dynamics that are linked to the various biogeochemical processes that occur in freshwater lake water columns and sediments. Abstract The volatile methylated sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. The main precursor of DMS in saline environments is dimethylsulfoniopropionate (DMSP), a common osmolyte in algae. The goal of this study was to assess the formation pathways of DMS in the water column and sediments of a monomictic freshwater lake based on seasonal profiles of the concentrations and isotopic signatures of DMS and DMSP. Profiles of DMS in the epilimnion during March and June 2014 in Lake Kinneret showed sulfur isotope (δ34S) values of +15.8±2.0 per mille (‰), which were enriched by up to 4.8 ‰ compared with DMSP δ34S values in the epilimnion at that time. During the stratified period, the δ34S values of DMS in the hypolimnion decreased to –7.0 ‰, close to the δ34S values of coexisting H2S derived from dissimilatory sulfate reduction in the reduced bottom water and sediments. This suggests that H2S was methylated by unknown microbial processes to form DMS. In the hypolimnion during the stratified period DMSP was significantly 34S enriched relative to DMS reflecting its different S source, which was mostly from sulfate assimilation. In the sediments, δ34S values of DMS were depleted by 2–4 ‰ relative to porewater (HCl-extracted) DMSP and enriched relative to H2S. This observation suggests two main formation pathways for DMS in the sediment, one from the degradation of DMSP and one from methylation of H2S. The present study provides isotopic evidence for multiple sources of DMS in stratified water bodies and complex DMSP–DMS dynamics that are linked to the various biogeochemical processes within the sulfur cycle.


2018 ◽  
Vol 18 (15) ◽  
pp. 10955-10971 ◽  
Author(s):  
Sarah A. Strode ◽  
Junhua Liu ◽  
Leslie Lait ◽  
Róisín Commane ◽  
Bruce Daube ◽  
...  

Abstract. The first phase of the Atmospheric Tomography Mission (ATom-1) took place in July–August 2016 and included flights above the remote Pacific and Atlantic oceans. Sampling of atmospheric constituents during these flights is designed to provide new insights into the chemical reactivity and processes of the remote atmosphere and how these processes are affected by anthropogenic emissions. Model simulations provide a valuable tool for interpreting these measurements and understanding the origin of the observed trace gases and aerosols, so it is important to quantify model performance. Goddard Earth Observing System Model version 5 (GEOS-5) forecasts and analyses show considerable skill in predicting and simulating the CO distribution and the timing of CO enhancements observed during the ATom-1 aircraft mission. We use GEOS-5's tagged tracers for CO to assess the contribution of different emission sources to the regions sampled by ATom-1 to elucidate the dominant anthropogenic influences on different parts of the remote atmosphere. We find a dominant contribution from non-biomass-burning sources along the ATom transects except over the tropical Atlantic, where African biomass burning makes a large contribution to the CO concentration. One of the goals of ATom is to provide a chemical climatology over the oceans, so it is important to consider whether August 2016 was representative of typical boreal summer conditions. Using satellite observations of 700 hPa and column CO from the Measurement of Pollution in the Troposphere (MOPITT) instrument, 215 hPa CO from the Microwave Limb Sounder (MLS), and aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS), we find that CO concentrations and aerosol optical thickness in August 2016 were within the observed range of the satellite observations but below the decadal median for many of the regions sampled. This suggests that the ATom-1 measurements may represent relatively clean but not exceptional conditions for lower-tropospheric CO.


2017 ◽  
Vol 14 (12) ◽  
pp. 3129-3155 ◽  
Author(s):  
Hakase Hayashida ◽  
Nadja Steiner ◽  
Adam Monahan ◽  
Virginie Galindo ◽  
Martine Lizotte ◽  
...  

Abstract. Sea ice represents an additional oceanic source of the climatically active gas dimethyl sulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is, however, not known due to scarcity of field measurements. In this study, we developed a coupled sea ice–ocean ecosystem–sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emissions of DMS in the Arctic. The results of the 1-D model simulation were compared with field data collected during May and June of 2010 in Resolute Passage. Our results reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The release of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Production and removal rates of processes considered in the model are analyzed to identify the processes dominating the budgets of DMS and DMSP both in the bottom ice and the underlying water column. When openings in the ice were taken into account, the simulated sea–air DMS flux during the melt period was dominated by episodic spikes of up to 8.1 µmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that should be better constrained by new observations.


2020 ◽  
Author(s):  
Wei-Lei Wang ◽  
Guisheng Song ◽  
François Primeau ◽  
Eric S. Saltzman ◽  
Thomas G. Bell ◽  
...  

Abstract. Marine dimethyl sulfide (DMS) is important to climate due to the ability of DMS to alter Earth's radiation budget. However, a knowledge of the global-scale distribution, seasonal variability, and sea-to-air flux of DMS is needed in order to understand the factors controlling surface ocean DMS and its impact on climate. Here we examine the use of an artificial neural network (ANN) to extrapolate available DMS measurements to the global ocean and produce a global climatology with monthly temporal resolution. A global database of 57 810 ship-based DMS measurements in surface waters was used along with a suite of environmental parameters consisting of lat-lon coordinates, time-of-day, time-of-year, solar radiation, mixed layer depth, sea surface temperature, salinity, nitrate, phosphate, silicate, and oxygen. Linear regressions of DMS against the environmental parameters show that on a global scale mixed layer depth and solar radiation are the strongest predictors of DMS, however, they capture 14 % and 12 % of the raw DMS data variance, respectively. The multi-linear regression can capture more (∼29 %) of the raw data variance, but strongly underestimates high DMS concentrations. In contrast, the ANN captures ~61 % of the raw data variance in our database. Like prior climatologies our results show a strong seasonal cycle in DMS concentration and sea-to-air flux. The highest concentrations (fluxes) occur in the high-latitude oceans during the summer. We estimate a lower global sea-to-air DMS flux (17.90 ± 0.34 Tg S yr−1) than the prior estimate based on a map interpolation method when the same gas transfer velocity parameterization is used.


Sign in / Sign up

Export Citation Format

Share Document