Serpentine Soils as Media for Plant Growth

Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

Plants and animals require water, energy sources, and nutrients to make tissues and perform vital functions. The primary source of energy is the sun. Green plants use solar energy to manufacture organic compounds that are later oxidized to produce energy for both plants and animals. Many microorganisms produce energy by inorganic chemical reactions, but that source of energy is minor compared to the very large amounts of solar energy used by green plants. The major source of water and nutrients (other than CO2) for green plants is soil. Barren rocks, including ultramafic rock outcrop and talus, are colonized by lichens, which are symbiotic alliances of fungi and either cyanobacteria or green algae. These and other small organisms promote weathering and contribute to soil formation. Once soils are deep enough to support vascular plants (plants with roots), plants are the primary users of soils and producers of ecosystem biomass. Vascular plants send roots into soils and exploit both a high soil particle surface area and soil solutions, neither of which are available to lichens growing on rock surfaces. The surface area of particles in a soil 10 cm deep is about a thousand times greater than a planar bedrock surface if the soil is coarse sand, or about a billion times greater if the soil is clayey. With these dramatic increases in surface area accompanying soil formation, and lack of water retained on rock surfaces, it is easy to understand that ecosystem productivity is relatively low on rock surfaces and increases greatly with soil depth in very shallow soils. Annual plants approach maximum productivity in moderately deep soils and trees in deep or very deep soils. Ecosystems with serpentine soils are generally less productive than ecosystems with other kinds of soils, and they have unique plant species distributions. Therefore, serpentine soils attract attention from botanists who are interested in the profound effects that serpentine soils have on plant distributions and growth. These effects include those that affect the supply of water (section 8.1) and those that affect the supply of nutrients (section 8.2) to plants. These in turn affect plant growth and productivity (section 8.3).

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


2021 ◽  
Vol 53 (3) ◽  
pp. 271-282
Author(s):  
Mónika Sinigla ◽  
Erzsébet Szurdoki ◽  
László Lőkös ◽  
Dénes Bartha ◽  
István Galambos ◽  
...  

AbstractThe maintenance of protected lichen species and their biodiversity in general depends on good management practices based on their distribution and habitat preferences. To date, 10 of the 17 protected lichen species of Hungary have been recorded in the Bakony Mts including the Balaton Uplands region. Habitat preferences of three protected Cladonia species (C. arbuscula, C. mitis and C. rangiferina) growing on underlying rocks of red sandstone, basalt, Pannonian sandstone and gravel were investigated by detailed sampling. We recorded aspect, underlying rock type, soil depth, pH and CaCO3 content, habitat type (as defined by the General National Habitat Classification System Á-NÉR), all species of lichen, bryophyte and vascular plants as well as percentage cover of exposed rock, total bryophytes, lichens, vascular plants and canopy, degree of disturbance and animal impacts. Sporadic populations of these species mostly exist at the top of hills and mountains in open acidofrequent oak forests, but they may occur in other habitats, such as closed acidofrequent oak forests, slope steppes on stony soils, siliceous open rocky grasslands, open sand steppes, wet and mesic pioneer scrub and dry Calluna heaths. Cladonia rangiferina was found to grow beneath higher canopy cover than either C. arbuscula or C. mitis in the Balaton Uplands. Furthermore, there were significant differences in canopy cover between occupied and unoccupied quadrats in the case of all three species. Cladonia rangiferina is a good indicator species of natural habitats in Hungary due to its restricted distribution and low ecological tolerance. These results may lead to the adoption of effective conservation methods (e.g. game exclusion, artificial dispersal) in the future.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Kelebohile Rose Seboko ◽  
Elmarie Kotze ◽  
Johan van Tol ◽  
George van Zijl

Soil organic carbon (SOC) is a crucial indicator of soil health and soil productivity. The long-term implications of rapid urbanization on sustainability have, in recent years, raised concern. This study aimed to characterize the SOC stocks in the Johannesburg Granite Dome, a highly urbanized and contaminated area. Six soil hydropedological groups; (recharge (deep), recharge (shallow), responsive (shallow), responsive (saturated), interflow (A/B), and interflow (soil/bedrock)) were identified to determine the vertical distribution of the SOC stocks and assess the variation among the soil groups. The carbon (C) content, bulk density, and soil depth were determined for all soil groups, and thereafter the SOC stocks were calculated. Organic C stocks in the A horizon ranged, on average, from 33.55 ± 21.73 t C ha−1 for recharge (deep) soils to 17.11 ± 7.62 t C ha−1 for responsive (shallow) soils. Higher C contents in some soils did not necessarily indicate higher SOC stocks due to the combined influence of soil depth and bulk density. Additionally, the total SOC stocks ranged from 92.82 ± 39.2 t C ha−1 for recharge (deep) soils to 22.81 ± 16.84 t C ha−1 for responsive (shallow) soils. Future studies should determine the SOC stocks in urban areas, taking diverse land-uses and the presence of iron (Fe) oxides into consideration. This is crucial for understanding urban ecosystem functions.


2013 ◽  
Vol 747 ◽  
pp. 599-602
Author(s):  
Surachet Toommee ◽  
Nisanart Traiphol

This research investigates using of poly (dimethylsiloxane-b-hydroxy ethyl acrylate) (PDMS-b-PHEA) diblock copolymer to stabilized TiO2nanoparticles in silicone fluid. The polar PHEA segment is expected to anchor on TiO2surface while the non-polar PDMS segment extends into silicone medium. To study effects of polymer structure on its stabilizing efficiency, PDMS-b-PHEA of structures 5-b-0.3, 5-b-1.1 and 8-b-1.0 are used. Results show that suspensions of particle with surface area ~40 and ~200 m2/g can be stabilized for longer than 1 and 7 hrs, respectively. The copolymer with relatively long PHEA and PDMS segments is highly effective as a dispersant. This is due to enhanced adsorption on particle surface and steric stabilization. However, in the system of 40 m2/g-TiO2, excess amounts could lead to polymer entanglement and particle agglomeration. The copolymer dispersant exhibits high efficiency for the 200 m2/g-TiO2suspension as well. In the latter system, higher concentration is required to effectively cover particle surface.


2013 ◽  
Author(s):  
George J. Nelson

Analytical models developed to investigate charge transfer in Li-ion battery cathodes reveal distinct transport regimes where performance may be limited by either microstructural surface characteristics or solid phase geometry. For several cathode materials, particularly those employing conductive additives, surface characteristics are expected to drive these performance limitations. For such electrodes gains in performance may be achieved by modifying surface geometry to increase surface area. However, added surface area may present a diminishing return if complex structures restrict access to electrochemically active interfaces. A series of parametric studies has been performed to better ascertain the merits of complex, tailored surfaces in Li-ion battery cathodes. The interaction between lithium transport and surface geometry is explored using a finite element model in which complex surfaces are simulated with fractal structures. Analysis of transport in these controlled structures permits assessment of scaling behavior related to surface complexity and provides insight into trade-offs in tailoring particle surface geometry.


1997 ◽  
Vol 71 (12) ◽  
pp. 725-729 ◽  
Author(s):  
Dominique Lison ◽  
Cécile Lardot ◽  
François Huaux ◽  
Giovanna Zanetti ◽  
Bice Fubini

Author(s):  
Gebeyaw Tilahun Yeshaneh

The study was conducted at the Abuhoy Gara Catchment, which is located in the Gidan District of North Wello Zone. The aim of the study was to study farmers’ perceptions about the effect of farm land management practices and soil depth on the distribution of major soil physico-chemical properties in eroded soils of Aboy Gara watershed. To address this issue, semi-structured interviews were conducted in 64 households to gain insight into soil fertility management practices, local methods were used to assess the fertility status of a field, and perceived trends in soil fertility. Thirty-three farmers were then asked to identify fertile and infertile fields. According to farmers response, farmers’ fields were characterized as fertile where it comprise black color, cracks during dry season, good crop performance, vigorous growth of certain plants and presence of plants in a dry environment whereas the infertile is where it shows yellow/white and red colors, compacted soils, stunted plant growth, presence of rocks and stones and wilting or dying of crops in a hot environment. A total of eight indicators (soil color, texture, soil depth, topography, soil drainage, and distance from home, type of weeds grown and cultivation intensity) were found to be used by farmers to evaluate and monitor soil fertility. The results of administered questions showed that the principal indicators mentioned by farmers as very important were soil colour (82.8%), continuous cropping land (72.2%), soil texture (62.8%), distance from home (61%), type of weeds grown (56%), soil depth (55.6%), topography (51.1%), and soil drainage (28.7%) as very important. So, among sixty four interviewed farmers: deep soil (60 farmers), soils near to home (60 farmers), forest soil (59 farmers), smooth fine soil (59 farmers), black color soil (58 farmers) and gentle slope soil (57farmers) are categorized as fertile whereas 59, 57, 56, 55, and 44farmers said that Sandy/coarse soil, shallow soil depth, steep slope soils and yellow/white, red soils and continuously cultivated soils are infertile, respectively. The overall result showed that there was good agreement between farmers’ assessment of the soil fertility status of a field and a number of these indicators. The soil laboratory analysis also corresponded well with farmers’ assessment of soil fertility. Therefore, to design more appropriate research and to facilitate clear communication with farmers, researchers need to recognize farmers’ knowledge, perceptions about assessments of soil fertility. Because, as they included all soil factors affecting plant growth, farmers’ perceptions of soil fertility were found to be more long term day-to-day close practical experience finding than those of researchers.


1942 ◽  
Vol 20c (3) ◽  
pp. 174-185 ◽  
Author(s):  
I. D. Blair

An adaptation of the Rossi and Cholodny glass slide technique was found to be an effective means of measuring the growth of Rhizoctonia Solani in soil. After a 6 day and a 12 day period, the extent of growth of 11 isolates of this fungus was, for each growth period, less in a vertical than in a radial direction. Certain isolates grew faster than others. A comparison of the radial growth of a faster and of a slower growing isolate at soil depth of 2, 4, and 6 in. showed that the extent of growth decreased with depth, being significantly greater for both isolates at the 2 in. than at the 6 in. level.In pathogenicity tests on wheat with 10 of these isolates, the disease rating for each isolate was greater in natural than in steam sterilized soil, and in soil with a proportion of inoculum to soil of one to six than of one to three. The addition of cellulosic organic material, grass- or straw-meal, to unsterilized soil was effective in reducing the parasitic action of all isolates. Two distinct types of injury were observed: the one, a severe form of root injury, resulting in reduced plant growth; the other, a girdling of the coleoptile or lower stem tissue, usually unaccompanied by adverse effects on plant growth. The first type was produced by two slow growing isolates of English origin, the second by faster growing isolates of Canadian origin. On the basis of these differences, it is suggested that the root injuring isolates be regarded as a variety of R. Solani Kühn.


Sign in / Sign up

Export Citation Format

Share Document