Atmospheric Carbon Dioxide over Phanerozoic Time

Author(s):  
Robert A. Berner

In this chapter the methods and results of modeling the long-term carbon cycle are presented in terms of predictions of past levels of atmospheric CO2. The modeling results are then compared with independent determinations of paleo-CO2 by means of a variety of different methods. Results indicate that there is reasonable agreement between methods as to the general trend of CO2 over Phanerozoic time. Values of fluxes in the long-term carbon cycle can be calculated from the fundamental equations for total carbon and 13C mass balance that are stated in the introduction and are repeated here: . . . dMc/dt = Fwc + Fwg + Fmc + Fmg – Fbc – Fbg (1.10) . . . . . . d(δcMc)/dt = δwcFwc + δwgFwg + δmcFmc + δmgFmg – δbcFbc – δbgFbg (1.11) . . . where Mc = mass of carbon in the surficial system consisting of the atmosphere, oceans, biosphere, and soils Fwc = flux from weathering of Ca and Mg carbonates Fwg = flux from weathering of sedimentary organic matter Fmc = degassing flux for carbonates from volcanism, metamorphism, and diagenesis Fmg = degassing flux for organic matter from volcanism, metamorphism, and diagenesis Fbc = burial flux of carbonates in sediments Fbg = burial flux of organic matter in sediments δ = [(13C/12C)/(13C/12C)stnd – 1]1000. Variants of equations (1.10) and (1.11) have been treated in terms of non–steady-state modeling (e.g., Berner et al., 1983; Wallmann, 2001; Hansen and Wallmann, 2003; Mackenzie et al., 2003; Bergman et al., 2003), where the evolution of both oceanic and atmospheric composition, including Ca, Mg, and other elements in seawater, is tracked over time. However, since the purpose of this book is to discuss the carbon cycle with respect to CO2 and O2, and so as not to overburden the reader with too many mathematical expressions, I discuss only those aspects of the non–steady-state models that directly impact carbon. These are combined with results from steady-state strictly carbon-cycle modeling (Garrels and Lerman, 1984; Berner, 1991, 1994; Kump and Arthur, 1997; Francois and Godderis, 1998; Tajika, 1998; Berner and Kothavala, 2001; Kashiwagi and Shikazono, 2002).

2021 ◽  
Vol 9 ◽  
Author(s):  
Gen Wang ◽  
Yongli Wang ◽  
Zhifu Wei ◽  
Zepeng Sun ◽  
Wei He ◽  
...  

Uplift of the Tibetan Plateau plays a significant and lasting role in the variations of climate conditions and global carbon cycle. However, our knowledge is limited due to the lack of long-sequence records revealing rates of CO2 and CH4 production, hampering our understanding of the relationship between paleoclimatic conditions, carbon cycling and greenhouse gas flux. Here, we present a combination of paleoclimate records and low-temperature thermal simulation results from sediments of the Xiaolongtan Basin at the southeastern margin of the Qinghai-Tibetan Plateau, spanning the late Miocene (14.1 ∼ 11.6 Ma). The n-alkane-derived proxies suggested that the sources of organic matter were obviously different: a mixed source including lower organisms and terrestrial higher plants for the Dongshengqiao Formation from 14.1 to 12.6 Ma, and a predominant contribution from terrestrial higher plants for Xiaolongtan Formation between 12.6 and 11.6 Ma. The paleoclimate was generally warm and humid as reflected by the lipid biomarkers, consistent with previous studies. In addition, the carbon gases (including CO2 and hydrocarbon gases) generated by the low-temperature thermal simulation experiments indicated a production rate of CO2 and CH4 were as high as 88,000 ml/kg rock and 4,000 ml/kg rock, respectively, implying there were certain amounts of carbon gases generated and released into the atmosphere during their shallow burial stage. Besides, the calculated production rate of carbon gases and the estimated burial flux of organic carbon varied in response to the variations of paleoclimate conditions. Based on these observations, we propose that the climate conditions predominantly controlled the formation and accumulation of organic matter, which consequently affected the production of carbon gases and burial flux of organic carbon. The results presented here may provide a significant insight into the carbon cycle in the southeast of the Tibetan Plateau.


2020 ◽  
Vol 21 (2) ◽  
pp. 160-168
Author(s):  
N. A. Kodochilova ◽  
T. S. Buzynina ◽  
L. D. Varlamova ◽  
E. A. Katerova

The studies on assessment of changes in the content and composition of soil organic matter under the influence of the systematic use of mineral fertilizers (NPK)1, (NPK)2, (NPK)3 against the background of the aftereffect of single liming in doses of 1.0 and 2.0 h. a. (control – variants without fertilizers and lime) were conducted in the conditions of the Nizhny Novgorod region in a long – term stationary experiment on light-grey forest soil. The research was carried out upon comple-tion of the fifth rotation of the eight-field crop rotation. The results of the study showed that for 40 years (from 1978 to 2018) the humus content in the soil (0-20 cm) decreased by 0.19-0.52 abs. % in variants as compared to the original (1.60 %); though, humus mineralization was less evident against the background of long-term use of mineral fertilizers compared to non-fertilized control. The higher humus content in the topsoil was noted in the variants with minimal (NPK)1 and increased (NPK)2 doses of fertilizer – 1.41 and 1.25 %, respectively. The humus content in non-fertilized soil and when applying high (NPK)3 doses of mineral fertilizers was almost identical – 1.08-1.09 %. The predominant group in the composition of humus were humic acids, the content of which in the experiment on average was 37.8 % of the total carbon with an evident decrease from 42.6 % in the control to 31.8% when applying increased doses of mineral fertilizers. The aftereffect of liming, carried out in 1978, was unstable and did not significantly affect the content and composition of soil organic matter.


2016 ◽  
Vol 16 (12) ◽  
pp. 7867-7878 ◽  
Author(s):  
Christian Frankenberg ◽  
Susan S. Kulawik ◽  
Steven C. Wofsy ◽  
Frédéric Chevallier ◽  
Bruce Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite – GOSAT, Thermal Emission Sounder – TES, Atmospheric Infrared Sounder – AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 354 ◽  
Author(s):  
Yawen Kong ◽  
Baozhang Chen ◽  
Simon Measho

The global carbon cycle research requires precise and sufficient observations of the column-averaged dry-air mole fraction of CO 2 (XCO 2 ) in addition to conventional surface mole fraction observations. In addition, assessing the consistency of multi-satellite data are crucial for joint utilization to better infer information about CO 2 sources and sinks. In this work, we evaluate the consistency of long-term XCO 2 retrievals from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2) in comparison with Total Carbon Column Observing Network (TCCON) and the 3D model of CO 2 mole fractions data from CarbonTracker 2017 (CT2017). We create a consistent joint dataset and compare it with the long-term model data to assess their abilities to characterize the carbon cycle climate. The results show that, although slight increasing differences are found between the GOSAT and TCCON XCO 2 in the northern temperate latitudes, the GOSAT and OCO-2 XCO 2 retrievals agree well in general, with a mean bias ± standard deviation of differences of 0.21 ± 1.3 ppm. The differences are almost within ±2 ppm and are independent of time, indicating that they are well calibrated. The differences between OCO-2 and CT2017 XCO 2 are much larger than those between GOSAT and CT XCO 2 , which can be attributed to the significantly different spatial representatives of OCO-2 and the CT-transport model 5 (TM5). The time series of the combined OCO-2/GOSAT dataset and the modeled XCO 2 agree well, and both can characterize significantly increasing atmospheric CO 2 under the impact of a large El Niño during 2015 and 2016. The trend calculated from the dataset using the seasonal Kendall (S-K) method indicates that atmospheric CO 2 is increasing by 2–2.6 ppm per year.


2007 ◽  
Vol 4 (3) ◽  
pp. 385-394 ◽  
Author(s):  
K. Klumpp ◽  
J. F. Soussana ◽  
R. Falcimagne

Abstract. We have set up a facility allowing steady state 13CO2 labeling of short stature vegetation (12 m2) for several years. 13C labelling is obtained by scrubbing the CO2 from outdoors air with a self-regenerating molecular sieve and by replacing it with 13C depleted (−34.7±0.03‰) fossil-fuel derived CO2 The facility, which comprises 16 replicate mesocosms, allows to trace the fate of photosynthetic carbon in plant-soil systems in natural light and at outdoors temperature. This method was applied to the study of soil organic carbon turnover in temperate grasslands. We tested the hypothesis that a low disturbance by grazing and cutting of the grassland increases the mean residence time of carbon in coarse (>0.2 mm) soil organic fractions. Grassland monoliths (0.5×0.5×0.4 m) were sampled from high and low disturbance treatments in a long-term (14 yrs) grazing experiment and were placed during two years in the mesocosms. During daytime, the canopy enclosure in each mesocosm was supplied in an open flow with air at mean CO2 concentration of 425 µmol mol−1 and δ13C of −21.5±0.27‰. Fully labelled mature grass leaves reached a δ13C of −40.8 (±0.93) and −42.2‰ (±0.60) in the low and high disturbance treatments, respectively, indicating a mean 13C labelling intensity of 12.7‰ compared to unlabelled control grass leaves. After two years, the delta 13C value of total soil organic matter above 0.2 mm was reduced in average by 7.8‰ in the labelled monoliths compared to controls. The isotope mass balance technique was used to calculate for the top (0–10 cm) soil the fraction of 13C labelled carbon in the soil organic matter above 0.2 mm (i.e. roots, rhizomes and particulate organic matter). A first order exponential decay model fitted to the unlabelled C in this fraction shows an increase in mean residence time from 22 to 31 months at low compared to high disturbance. A slower decay of roots, rhizomes and particulate organic matter above 0.2 mm is therefore likely to contribute to the observed increased in soil carbon sequestration in grassland monoliths exposed to low disturbance.


2011 ◽  
Vol 4 (2) ◽  
pp. 1435-1476 ◽  
Author(s):  
R. E. Zeebe

Abstract. The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to [email protected].


2013 ◽  
Vol 10 (2) ◽  
pp. 929-944 ◽  
Author(s):  
D. J. Charman ◽  
D. W. Beilman ◽  
M. Blaauw ◽  
R. K. Booth ◽  
S. Brewer ◽  
...  

Abstract. Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.


1997 ◽  
Vol 77 (4) ◽  
pp. 553-563 ◽  
Author(s):  
C. M. Monreal ◽  
R. P. Zentner ◽  
J. A. Robertson

We examined the influence of management on soil organic matter (SOM) dynamics and yield of wheat grain in semiarid Chernozemic and humid Gray Luvisolic soils. The Century model was tested with data obtained from long-term research plots cropped to wheat (Triticum aestivum L.) monoculture and cereal-hay (CH). Century simulated changes in soil organic-C (OC) and organic-N (ON) within 10% of actual measurements taken over decades. Our analysis indicated that management and soil erosion affected the time required for SOM to achieve new steady-state level (Tst). Tst ranged between 12 yr under wheat and 46 yr under CH cropping. Increasing the SOM content of degraded soils to new steady-state level appears to increase grain yield between 86 kg ha−1 and 840 kg ha−1.Wheat-fallow (WF) rotation plots receiving <10 kg N ha−1 yr−1, and with erosion >13.6 t ha−1 yr−1 degraded SOM. The average long-term yield of wheat grain (including new high yielding varieties) was maintained at <910 kg ha−1 yr−1 under degraded SOM content. Well-fertilized continuous wheat (CW) and CH rotation plots with erosion <4 t ha−1 yr−1 aggraded SOM content, and maintained the long-term average grain yield at >1290 kg ha−1 yr−1. Sustained OC levels were attained by returning 1030 kg C ha−1 yr−1 as plant residue (roots + aboveground) and keeping soil erosion ≤12.8 t ha−1 yr−1. Sustainable crop production systems need to consider SOM dynamics and erosion as factors limiting grain yield even after introducing genetically improved wheat varieties. Key words: Management, organic matter, erosion, dynamics, yield, manure, nitrogen, tillage, steady-state


Sign in / Sign up

Export Citation Format

Share Document