Entanglement, Decoherence and Which-Path Information

2020 ◽  
pp. 124-139
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry attempts to sneak into Eve’s residence undetected by taking advantage of his quantum coherence, but his quantum entanglement with Schred puts him in peril: Henry can no longer interfere with himself, he decoheres, since his two versions are differently tagged by correlations with different versions of Schred. Entanglement in composite systems is not only the hallmark of quantumness but also the key to its demise, alias decoherence. Decoherence, by transforming quantum information into classical information, is the biggest obstacle towards controlling complex quantum systems, particularly quantum computers. Information is collected and processed by “observers”: all life forms and their artificial (computerized) extensions. The question that reflects the millennia-long controversy on free will is: do observers have the freedom to choose the mode of their observation? The appendix to this chapechapter investigates the interference of two quantum systems as a function of their entanglement.

Author(s):  
Ciaran Hughes ◽  
Joshua Isaacson ◽  
Anastasia Perry ◽  
Ranbel F. Sun ◽  
Jessica Turner

AbstractSo far, we have discussed the manipulation and measurement of a single qubit. However, quantum entanglement is a physical phenomenon that occurs when multiple qubits are correlated with each other. Entanglement can have strange and useful consequences that could make quantum computers faster than classical computers. Qubits can be “entangled,” providing hidden quantum information that does not exist in the classical world. It is this entanglement that is one of the main advantages of the quantum world!


2012 ◽  
Vol 10 (04) ◽  
pp. 1250047 ◽  
Author(s):  
YURI CASSIO CAMPBELL-BORGES ◽  
JOSÉ ROBERTO CASTILHO PIQUEIRA

In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann–Gibbs–Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner–Davison–Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 773
Author(s):  
Danko D. Georgiev

Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck–Einstein relation between energy and frequency, in order to determine the appropriate quantum dynamical timescale of conscious processes. Furthermore, with the help of a simple two-qubit toy model we illustrate the importance of non-zero interaction Hamiltonian for the generation of quantum entanglement and manifestation of observable correlations between different measurement outcomes. Employing a quantitative measure of entanglement based on Schmidt decomposition, we show that quantum evolution governed only by internal Hamiltonians for the individual quantum subsystems preserves quantum coherence of separable initial quantum states, but eliminates the possibility of any interaction and quantum entanglement. The presence of non-zero interaction Hamiltonian, however, allows for decoherence of the individual quantum subsystems along with their mutual interaction and quantum entanglement. The presented results show that quantum coherence of individual subsystems cannot be used for cognitive binding because it is a physical mechanism that leads to separability and non-interaction. In contrast, quantum interactions with their associated decoherence of individual subsystems are instrumental for dynamical changes in the quantum entanglement of the composite quantum state vector and manifested correlations of different observable outcomes. Thus, fast decoherence timescales could assist cognitive binding through quantum entanglement across extensive neural networks in the brain cortex.


2021 ◽  
Vol 11 (4) ◽  
pp. 1405
Author(s):  
Nan Zhao ◽  
Tingting Wu ◽  
Yan Yu ◽  
Changxing Pei

As research on quantum computers and quantum information transmission deepens, the multi-particle and multi-mode quantum information transmission has been attracting increasing attention. For scenarios where multi-parties transmit sequentially increasing qubits, we put forward a novel (N + 1)-party cyclic remote state preparation (RSP) protocol among an arbitrary number of players and a controller. Specifically, we employ a four-party scheme in the case of a cyclic asymmetric remote state preparation scheme and demonstrate the feasibility of the scheme on the IBM Quantum Experience platform. Furthermore, we present a general quantum channel expression under different circulation directions based on the n-party. In addition, considering the impact of the actual environment in the scheme, we discuss the feasibility of the scheme affected by different noises.


Nanophotonics ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Genta Masada ◽  
Akira Furusawa

AbstractEntanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.


Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. 568-571 ◽  
Author(s):  
Andrea Blanco-Redondo ◽  
Bryn Bell ◽  
Dikla Oren ◽  
Benjamin J. Eggleton ◽  
Mordechai Segev

The robust generation and propagation of multiphoton quantum states are crucial for applications in quantum information, computing, and communications. Although photons are intrinsically well isolated from the thermal environment, scaling to large quantum optical devices is still limited by scattering loss and other errors arising from random fabrication imperfections. The recent discoveries regarding topological phases have introduced avenues to construct quantum systems that are protected against scattering and imperfections. We experimentally demonstrate topological protection of biphoton states, the building block for quantum information systems. We provide clear evidence of the robustness of the spatial features and the propagation constant of biphoton states generated within a nanophotonics lattice with nontrivial topology and propose a concrete path to build robust entangled states for quantum gates.


2014 ◽  
Vol 30 (2) ◽  
pp. 601-606
Author(s):  
Yadollah Farahmand ◽  
ZABIALAH HEIDARNEZHAD ◽  
FATEMEH HEIDARNEZHAD ◽  
KH. KH. MUMINOV ◽  
FATEMEH HEYDARI

2020 ◽  
Author(s):  
Vasil Dinev Penchev

If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the determinism of classical physics is more subjective and more anthropomorphic than the indeterminism of quantum mechanics for the former presupposes certain deterministic goal implicitly following the model of human freewill behavior. Quantum mechanics introduces the choice in the fundament of physical world involving a generalized case of choice, which can be called “subjectless”: There is certain choice, which originates from the transition of the future into the past. Thus that kind of choice is shared of all existing and does not need any subject: It can be considered as a low of nature. There are a few theorems in quantum mechanics directly relevant to the topic: two of them are called “free will theorems” by their authors (Conway and Kochen 2006; 2009). Any quantum system either a human or an electron or whatever else has always a choice: Its behavior is not predetermined by its past. This is a physical law. It implies that a form of information, the quantum information underlies all existing for the unit of the quantity of information is an elementary choice: either a bit or a quantum bit (qubit).


2021 ◽  
Author(s):  
Kit M Gerodias ◽  
Maria Victoria Carpio Bernido ◽  
Christopher Casenas Bernido

Abstract The high internal quantum efficiency observed in higher plants remains an outstanding problem in understanding photosynthesis. Several approaches such as quantum entanglement and quantum coherence have been explored. However, none has yet drawn an analogy between superlattices and the geometrical structure of granal thylakoids in leaves. In this paper, we calculate the transmission coefficients and perform numerical simulations using the parameters relevant to a stack of thylakoid discs. We then show that quantum resonant tunneling can occur at low effective mass of particles for 680 nm and 700 nm incident wavelengths corresponding to energies at which photosynthesis occurs.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Koen Groenland

Transporting quantum information is an important prerequisite for quantum computers. We study how this can be done in Heisenberg-coupled spin networks using adiabatic control over the coupling strengths. We find that qudits can be transferred and entangled pairs can be created between distant sites of bipartite graphs with a certain balance between the maximum spin of both parts, extending previous results that were limited to linear chains. The transfer fidelity in a small star-shaped network is numerically analysed, and possible experimental implementations are discussed.


Sign in / Sign up

Export Citation Format

Share Document