Tropical Forests in Prehistory, History, and Modernity

Author(s):  
Patrick Roberts

In popular discourse, tropical forests are synonymous with 'nature' and 'wilderness'; battlegrounds between apparently pristine floral, faunal, and human communities, and the unrelenting industrial and urban powers of the modern world. It is rarely publicly understood that the extent of human adaptation to, and alteration of, tropical forest environments extends across archaeological, historical, and anthropological timescales. This book is the first attempt to bring together evidence for the nature of human interactions with tropical forests on a global scale, from the emergence of hominins in the tropical forests of Africa to modern conservation issues. Following a review of the natural history and variability of tropical forest ecosystems, this book takes a tour of human, and human ancestor, occupation and use of tropical forest environments through time. Far from being pristine, primordial ecosystems, this book illustrates how our species has inhabited and modified tropical forests from the earliest stages of its evolution. While agricultural strategies and vast urban networks emerged in tropical forests long prior to the arrival of European colonial powers and later industrialization, this should not be taken as justification for the massive deforestation and biodiversity threats imposed on tropical forest ecosystems in the 21st century. Rather, such a long-term perspective highlights the ongoing challenges of sustainability faced by forager, agricultural, and urban societies in these environments, setting the stage for more integrated approaches to conservation and policy-making, and the protection of millennia of ecological and cultural heritage bound up in these habitats.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 734
Author(s):  
Xiankai Lu ◽  
Qinggong Mao ◽  
Zhuohang Wang ◽  
Taiki Mori ◽  
Jiangming Mo ◽  
...  

Anthropogenic elevated nitrogen (N) deposition has an accelerated terrestrial N cycle, shaping soil carbon dynamics and storage through altering soil organic carbon mineralization processes. However, it remains unclear how long-term high N deposition affects soil carbon mineralization in tropical forests. To address this question, we established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China with N additions such as NH4NO3 of 0 (Control), 50 (Low-N), 100 (Medium-N) and 150 (High-N) kg N ha−1 yr−1, and laboratory incubation experiment, used to explore the response of soil carbon mineralization to the N additions therein. The results showed that 15 years of N additions significantly decreased soil carbon mineralization rates. During the incubation period from the 14th day to 56th day, the average decreases in soil CO2 emission rates were 18%, 33% and 47% in the low-N, medium-N and high-N treatments, respectively, compared with the Control. These negative effects were primarily aroused by the reduced soil microbial biomass and modified microbial functions (e.g., a decrease in bacteria relative abundance), which could be attributed to N-addition-induced soil acidification and potential phosphorus limitation in this forest. We further found that N additions greatly increased soil-dissolved organic carbon (DOC), and there were significantly negative relationships between microbial biomass and soil DOC, indicating that microbial consumption on soil-soluble carbon pool may decrease. These results suggests that long-term N deposition can increase soil carbon stability and benefit carbon sequestration through decreased carbon mineralization in N-rich tropical forests. This study can help us understand how microbes control soil carbon cycling and carbon sink in the tropics under both elevated N deposition and carbon dioxide in the future.


2002 ◽  
Vol 2 ◽  
pp. 827-841 ◽  
Author(s):  
Michael Bredemeier

The focus in this review of long-term effects on forest ecosystems is on human impact. As a classification of this differentiated and complex matter, three domains of long-term effects with different scales in space and time are distinguished: 1- Exploitation and conversion history of forests in areas of extended human settlement 2- Long-range air pollution and acid deposition in industrialized regions 3- Current global loss of forests and soil degradation.There is an evident link between the first and the third point in the list. Cultivation of primary forestland — with its tremendous effects on land cover — took place in Europe many centuries ago and continued for centuries. Deforestation today is a phenomenon predominantly observed in the developing countries, yet it threatens biotic and soil resources on a global scale. Acidification of forest soils caused by long-range air pollution from anthropogenic emission sources is a regional to continental problem in industrialized parts of the world. As a result of emission reduction legislation, atmospheric acid deposition is currently on the retreat in the richer industrialized regions (e.g., Europe, U.S., Japan); however, because many other regions of the world are at present rapidly developing their polluting industries (e.g., China and India), “acid rain” will most probably remain a serious ecological problem on regional scales. It is believed to have caused considerable destabilization of forest ecosystems, adding to the strong structural and biogeochemical impacts resulting from exploitation history.Deforestation and soil degradation cause the most pressing ecological problems for the time being, at least on the global scale. In many of those regions where loss of forests and soils is now high, it may be extremely difficult or impossible to restore forest ecosystems and soil productivity. Moreover, the driving forces, which are predominantly of a demographic and socioeconomic nature, do not yet seem to be lessening in strength. It can only be hoped that a wise policy of international cooperation and shared aims can cope with this problem in the future.


Oryx ◽  
1995 ◽  
Vol 29 (3) ◽  
pp. 205-211 ◽  
Author(s):  
Andrew Grieser Johns ◽  
Bettina Grieser Johns

Over 10 years ago, Oryx published initial details of an investigation into the effects of selective timber logging on primates in the Sungai Tekam Forestry Concession in peninsular Malaysia (Johns, 1983). This original 2-year field study developed into a long-term monitoring programme, in which the recovery of primates in the regenerating forest is to be recorded throughout the logging cycle. This is the only such monitoring programme so far established in the world's tropical forests. The dataset is now complete for forests logged up to 18 years ago.


1996 ◽  
Vol 23 (3) ◽  
pp. 235-248 ◽  
Author(s):  
Oliver L. Phillips

SummaryAnalyzing permanent plot data from 40 tropical forest sites, Phillips and Gentry (1994) found that there has been a significant tendency for tree turnover – as measured by tree mortality and recruitment – to increase since the 1950s. The dataset is now substantially improved, and includes 67 mature forest sites with turnover data representing most of the major tropical forest regions of the world. This paper presents an updated and expanded analysis of the latest data, and confirms that tree turnover has increased in mature tropical forest plots. Several artifactual explanations have been suggested but none are supported by the available data, suggesting that surviving mature tropical forests have been recently affected by large-scale anthropogenic or natural change. The effects of increased turnover may include impacts on future global atmosphere, climate, and biodiversity. Better understanding of the ecological changes in mature tropical forests depends on progress in two critical research areas – a ground-based monitoring network of long-term, fully identified tropical forest plots, and controlled manipulation of atmospheric conditions in forest experiments. Research activity in both areas needs to be substantially increased if we are to understand and predict the complex interactions between tropical forest ecology and global environmental change.


2007 ◽  
Vol 7 (5) ◽  
pp. 14011-14039 ◽  
Author(s):  
V. Sinha ◽  
J. Williams ◽  
P. J. Crutzen ◽  
J. Lelieveld

Abstract. Methane is a climatologically important greenhouse gas, which plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. Recent findings that vegetation emits methane have stimulated efforts to ascertain the impact of this source on the global budget. In this work, we present the results of high frequency (ca. 1 min−1) methane measurements conducted in the boreal forests of Finland and the tropical forests of Suriname, in April–May, 2005 and October 2005 respectively. The measurements were performed using a gas chromatograph – flame ionization detector (GC-FID). The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol−1 and 1.74 μmol mol−1 for the boreal forest ecosystem and tropical forest ecosystem respectively, with remarkable similarity in the time series of both the boreal and tropical diel profiles. Night time methane emission flux of the boreal forest ecosystem, calculated from the increase of methane during the night and measured nocturnal boundary layer heights yields a flux of (3.62±0.87)×1011 molecules cm−2 s−1(or 45.5±11 Tg CH4 yr−1 for global boreal forest area). This is a source contribution of circa 8% of the global methane budget. These results highlight the importance of the boreal and tropical forest ecosystems for the global budget of methane. The results are also discussed in the context of recent work reporting high methane mixing ratios over tropical forests using space borne near infra-red spectroscopy measurements.


Author(s):  
Patrick Roberts

Friedrich Wöhler was referring to the field of organic chemistry during the early 1800s when he wrote the above but his comments would not be out of place in the context of embarking upon a global study of past and present human relationships with tropical forests. Dense vegetation, difficulty of navigation, issues of preservation, political and health concerns, poisonous plants, animals, and insects, and the prospect of carrying out sampling or excavation in high humidity have all meant that our knowledge of human history and prehistory in these environments is under-developed relative to temperate, arid, or even polar habitats. There have been theoretical questions as to what kind of human activity one would even expect to find in tropical forest environments, which seem hostile to human foraging (Hart and Hart, 1986; Bailey et al., 1989) let alone thriving agricultural or urban settlements (Meggers, 1971, 1977, 1987). This has, until relatively recently, left the state of archaeological tropical forest research in a similar position to popular conceptions of these environments—untouched, primeval wilderness. Public ideas of an archaeologist investigating a tropical forest are probably synonymous with someone in a shabby-looking leather hat being chased, if not by a large stone boulder then by a group of Indigenous people with blowpipes, as they wade through dense undergrowth and vines while clutching a golden discovery that has been lost to the western world for thousands of years (Spielberg, 1981). The more recent development of the best-selling Uncharted video game series has done little to change these ideas amongst the next generation of media consumers, with players taking on the role of Francis Drake’s mythical ancestor in search of long lost treasure, frequently hidden within caves and ruins surrounded by vines and dense canopies (Naughty Dog et al., 2016). The idea of treasure hidden within tropical forest is also not a modern conception. The long-term myth of El Dorado, a city covered in gold, fuelled exploration of the tropical forests of South America by renowned individuals, including Sir Walter Raleigh, from the sixteenth to the nineteenth centuries (Nicholl, 1995).


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Manoel Cardoso ◽  
Carlos Nobre ◽  
Gilvan Sampaio ◽  
Marina Hirota ◽  
Dalton Valeriano ◽  
...  

AbstractBiome models of the global climate-vegetation relationships indicate that most of the Brazilian Amazon has potential for being covered by tropical forests. From current land-use processes observed in the region, however, substantial deforestation and fire activity have been verified in large portions of the region, particularly along the Arc of Deforestation. In a first attempt to evaluate the long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon, we analysed large-scale data on fire activity and climate factors that drive the distribution of tropical forests in the region. The initial analyses and results from this study lead to important details on the relations between these quantities and have important implications for building future parameterizations of the vulnerability of tropical forests in the region.


2012 ◽  
Vol 279 (1744) ◽  
pp. 3923-3931 ◽  
Author(s):  
Shirley Xiaobi Dong ◽  
Stuart J. Davies ◽  
Peter S. Ashton ◽  
Sarayudh Bunyavejchewin ◽  
M. N. Nur Supardi ◽  
...  

The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.


2018 ◽  
pp. 125-141 ◽  
Author(s):  
S. M. Drobyshevsky ◽  
P. V. Trunin ◽  
A. V. Bozhechkova

The paper studies the factors of secular stagnation. Key factors of long-term slowdown in economic growth include the slowdown of technological development, aging population, human capital accumulation limits, high public debt, creative destruction process violation etc. The authors analyze key theoretical aspects of long-term stagnation and study the impact of these factors on Japanies economy. The authors conclude that most of the factors have significant influence on the Japanese economy for recent decades, but they cannot explain all dynamics. For Russia, on the contrary, we do not see any grounds for considering the decline in the economy since 2013 as an episode of secular stagnation.


Author(s):  
Oksana Gaiduchok ◽  
◽  
Oleksiy Stupnytskyi ◽  

In modern times, it is believed that by reducing the risk of military intervention, military security has lost its relevance, and economic security has become a priority of national interests. The principle of economic security is as follows: national interests are supported through an economic system that supports free exchange and ensures the upward mobility of the nation. The analysis of economic security is based on the concept of national interests. It is well known that the problem of national security and its components cannot be considered only from the standpoint of current interests; it is closely related to the possibilities of their implementation over a significant, long-term period. Each stage of realization of national interests of the country is characterized by its assessment of its geopolitical, geostrategic and geoeconomic conditions, security threats and the main carriers of these threats, the mechanism of realization of national interests (each of the stages has its own assessment of the main definitions and categories of security, the main vectors of geoeconomic policy). Economic security is the foundation and material basis of national security. A state is in a state of security if it protects its own national interests and is able to defend them through political, economic, socio-psychological, military and other actions. There is a close connection between economic security and the system of national and state interests, and it is through this category that the problems of economic potential and economic power of the state, geopolitical and geoeconomic positions of the country in the modern world are intertwined. At a time when regional forces are trying to expand markets, provide access to finance and the latest technology, economic security has become a necessary component of the ability of regional forces to expand their influence. The article is devoted to the study of economic security of Ukraine and its components using the model of quantitative assessment of economic security of Ukraine. Using the Fishburne method, a model is built that allows to obtain an integrated assessment of the level of economic security based on the synthesis of nine partial indicators.


Sign in / Sign up

Export Citation Format

Share Document