Respiratory System

Author(s):  
Gautam Mehta ◽  
Bilal Iqbal

Interstitial lung disease is a common case for the respiratory section of the MRCP PACES examination. Quite often they are cases of idiopathic pulmonary fibrosis (cryptogenic fibrosing alveolitis) or in the context of systemic (commonly rheumatological) disease. The above cases reflect these common scenarios. To make the diagnosis of interstitial lung disease is relatively straightforward, but presenting other physical signs of underlying aetiologies, mentioning important negatives, and appreciating and recognizing complications of therapy and the disease will impress examiners, not to mention gain considerable extra marks. 1. In approaching a respiratory patient, it is often useful in starting to present the case with a comment on functional status. They may be breathless at rest. They may be on oxygen therapy. Ask the patient to cough. The presence of a non-productive or a productive cough should give clues to underlying diagnosis. Patients with interstitial lung disease often have a non-productive cough, unless this has been complicated by infection. 2. Patients often have peripheral cyanosis. Central cyanosis may be present in advanced disease. 3. Clubbing may not always be present in cases of interstitial lung disease. If present, don’t miss it! 4. Spend a little extra time when examining hands and making general observations. There are many systemic disorders that are associated with pulmonary fibrosis. The presence of peripheral stigmata of systemic disease, usually connective tissue or rheumatological disease, will provide an important clue to the respiratory diagnosis. Look for • rheumatoid arthritis (symmetrical deforming arthropathy of the hands, rheumatoid nodules) • systemic sclerosis (tight and shiny skin, telangiectasia, sclerodactyly, calcinosis, atrophic nails, and Raynaud’s phenomenon) • SLE (petechial rash, livedo reticularis, purpura, arthropathy, butterfly skin rash) • dermatomyositis (Gottron’s papules, heliotrope rash of eyelids/periorbital areas, proximal myopathy) • ankylosing spondylitis (loss of lumber lordosis, fixed kyphosis, stooped posture) • neurofibromatoisis (neurofibromata, café au lait patches) • sarcoidosis (erythema nodosum, maculopapular skin lesions, lupus pernio, lympahdenopathy) • drugs, i.e. amiodarone (grey slate skin pigmentation—the irregular pulse of atrial fibrillation (AF) may be a clue) • radiation therapy (erythema and/or field markings on chest wall)

Introduction 222 Known idiopathic pulmonary fibrosis 222 Other idiopathic interstitial lung diseases 223 Drug-induced interstitial lung disease 224 Hypersensitivity pneumonitis (HP) 224 The classification of interstitial lung disease (ILD) has been refined significantly over recent years and is rather confusing to the uninitiated! Most ILDs are rare and unlikely to present as an emergency. Cryptogenic fibrosing alveolitis (CFA), also known as idiopathic pulmonary fibrosis (IPF), is probably the most frequent ILD encountered in routine respiratory practice. The pathology underlying this is termed ‘usual interstitial pneumonia’ (UIP) and it is one of the so-called ‘idiopathic interstitial pneumonias’ (IIPs). These three terms (IPF, CFA, UIP) are often used interchangeably in the same patient's notes which can easily cause further confusion! Description of the pathological distinction between specific disease entities is beyond the scope of this chapter (see OHRM, Chapter 35)....


2021 ◽  
Vol 10 (11) ◽  
pp. 2285
Author(s):  
John N. Shumar ◽  
Abhimanyu Chandel ◽  
Christopher S. King

Progressive fibrosing interstitial lung disease (PF-ILD) describes a phenotypic subset of interstitial lung diseases characterized by progressive, intractable lung fibrosis. PF-ILD is separate from, but has radiographic, histopathologic, and clinical similarities to idiopathic pulmonary fibrosis. Two antifibrotic medications, nintedanib and pirfenidone, have been approved for use in patients with idiopathic pulmonary fibrosis. Recently completed randomized controlled trials have demonstrated the clinical efficacy of antifibrotic therapy in patients with PF-ILD. The validation of efficacy of antifibrotic therapy in PF-ILD has changed the treatment landscape for all of the fibrotic lung diseases, providing a new treatment pathway and opening the door for combined antifibrotic and immunosuppressant drug therapy to address both the fibrotic and inflammatory components of ILD characterized by mixed pathophysiologic pathways.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 982.2-982
Author(s):  
C. Aguilera Cros ◽  
M. Gomez Vargas ◽  
R. J. Gil Velez ◽  
J. A. Rodriguez Portal

Background:There is no specific treatment for interstitial lung disease (ILD) secondary to Rheumatoid Arthritis (RA) other than the treatment of RA without extra-articular involvement. Current regimens usually include corticosteroid therapy with or without immunosuppressants (IS), there is no consensus for the treatment.Objectives:To analyze the different treatment regimens in a cohort of patients with ILD and RA in our clinical practice.Methods:Descriptive study of 57 patients treated in our Hospital (1/1/2018 until 12/31/2019) with a diagnosis of RA (ACR 2010 criteria) and secondary ILD.The most recent American Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society (JRS)/Latin American Thoracic Society (ALAT) guidelines define three HRCT (High Resolution Computed Tomography) patterns of fibrosing lung disease in the setting of idiopathic pulmonary fibrosis (IPF): definite Usual Interstitial pneumonia (UIP) (traction bronchiectasis and honeycombing), possible UIP and inconsistent with UIP. The distinction between definite UIP and possible UIP in these to the presence or absence of honeycombing. Approved by the Ethics Committee.Quantitative variables are expressed as mean (SD) and dichotomous variables as percentages (%). Statistical analysis with SPSS version 21.Results:21 men and 36 women were included, with a mean age of 69 ± 10 years (mean ± SD), history of smoking (smokers 14%, non-smokers 43%, former smokers 42%). Clinical ILD at diagnosis (dyspnea 61%, dry cough 56%, crackling 70%, acropachy 7%). 84% were positive rheumatoid factor and 70% positive anticitrullinated protein antibody.Diagnosis of ILD by HRCT in 100% of patients with different patterns: defined UIP 26 (45%), probable UIP 2 (3%) and not UIP 29 (50%). The diagnosis of ILD was confirmed by biopsy in 12 patients.79% underwent (T) treatment prior to the diagnosis of ILD with glucocorticoids and disease-modifying drugs (DMARD). Among the traditional DMARDs used were: Methotrexate 68% (there were no cases of MTX pneumonitis), Leflunomide 47%, Hydroxychloroquine 26% and Sulfasalazine 21%. Biological therapy in 15 patients: Etanercept 19%, Adalimumab 5%, Infliximab 3% and Certolizumab 2%. Two patients presented an exacerbation and rapid progression of the ILD during the T with Etanercept with the final result of death.T with IS after the diagnosis of ILD in 80% of patients (Azathioprine 15, Rituximab 14, Abatacept 10, Tocilizumab 4, Sarilumab 1, Mofetil mycophenolate 1 and Cyclophosphamide 1).Two patients with defined UIP perform T with antifibrotic: 1st Nintedanib (INBUILD Trial, This article was published on September 29, 2019, at NEJM.org) 2nd Pirfenidone (initial diagnosis of IPF Idiopathic Pulmonary Fibrosis and subsequent of seropositive RA with UIP). Both improved greater than 10% in forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO) in the 6 months after onset of T.Conclusion:Our results, in general, agree with what is published in the literature. Prospective, multicentre and larger sample studies are necessary to better define which patients would benefit more from IS T or antifibrotic T (or if the antifibrotic should be added to the previous IS).Disclosure of Interests:None declared


2021 ◽  
Vol 8 (1) ◽  
pp. e000829
Author(s):  
Shaney L Barratt ◽  
Havra H Adamali ◽  
Caroline Cotton ◽  
Ben Mulhearn ◽  
Hina Iftikhar ◽  
...  

IntroductionAntisynthetase syndrome (ASyS) is a rare autoimmune connective tissue disease (CTD), associated with autoantibodies targeting tRNA synthetase enzymes, that can present to respiratory (interstitial lung disease (ILD)) or rheumatology (myositis, inflammatory arthritis and systemic features) services. The therapeutic management of CTD-associated ILD and idiopathic pulmonary fibrosis (IPF) differs widely, thus accurate diagnosis is essential.MethodsWe undertook a retrospective, multicentre observational cohort study designed to (1) evaluate differences between ASyS-associated ILD with IPF, (2) phenotypic differences in patients with ASyS-ILD presenting to respiratory versus rheumatology services, (3) differences in outcomes between ASySassociated with Jo-1 versus non-Jo-1 autoantibodies and (4) compare long-term outcomes between these groups.ResultsWe identified 76 patients with ASyS-ILD and 78 with IPF. Patients with ASyS were younger at presentation (57 vs 77 years, p<0.001) with a female predominance (57% vs 33%, p=0.006) compared with IPF. Cytoplasmic staining on indirect immunofluorescence was a differentiating factor between ASyS and IPF (71% vs 0%, p<0.0001). Patients with ASyS presenting initially to respiratory services (n=52) had a higher prevalence of ASyS non-Jo-1 antibodies and significantly fewer musculoskeletal symptoms/biochemical evidence of myositis, compared with those presenting to rheumatology services (p<0.05), although lung physiology was similar in both groups. There were no differences in high-resolution CT appearances or outcomes in those with Jo-1 versus non-Jo-1 ASyS-ILD.ConclusionsExtended autoimmune serology is needed to evaluate for ASyS autoantibodies in patients presenting with ILD, particularly in younger female patients. Musculoskeletal involvement is common in ASyS (typically Jo-1 autoantibodies) presenting to rheumatology but the burden of ILD is similar to those presenting to respiratory medicine.


2008 ◽  
Vol 294 (1) ◽  
pp. L24-L33 ◽  
Author(s):  
Anna R. Hemnes ◽  
Ari Zaiman ◽  
Hunter C. Champion

Pulmonary hypertension frequently complicates interstitial lung disease, where it is associated with a high mortality. Patients with this dual diagnosis often fare worse than those with pulmonary arterial hypertension (PAH) alone and respond poorly to standard PAH therapy, often dying of right ventricular (RV) failure. We hypothesize that nitric oxide synthase (NOS) uncoupling is important in the pathogenesis of interstitial lung disease-associated pulmonary hypertension, and this process can be abrogated by phosphodiesterase type 5 (PDE5) inhibition to improve pulmonary vascular remodeling and right ventricular function. Intratracheal bleomycin (4 U/kg) or saline control was administered to C57/BL6 mice after anesthesia. After recovery, animals were fed a diet of sildenafil (100 mg·kg−1·day−1) or vehicle for 2 wk when they underwent hemodynamic measurements, and tissues were harvested. Survival was reduced in animals treated with bleomycin compared with controls and was improved with sildenafil (100.0 vs. 73.7 vs. 84.2%, P < 0.05). RV/LV+S ratio was higher in bleomycin-alone mice with improvement in ratio when sildenafil was administered (33.00 ± 0.01% vs. 20.98 ± 0.01% P < 0.05). Histology showed less pulmonary vascular and RV fibrosis in the group cotreated with sildenafil. Bleomycin was associated with a marked increase in superoxide generation by DHE histological staining and luminol activity in both heart and lung. Treatment with sildenafil resulted in a concomitant reduction in superoxide levels in both heart and lung. These data demonstrate that PDE5 inhibition ameliorates RV hypertrophy and pulmonary fibrosis associated with intratracheal bleomycin in a manner that is associated with improved NOS coupling and a reduction in reactive oxygen species signaling.


Author(s):  
Joon Young Choi ◽  
Jin Woo Song ◽  
Chin Kook Rhee

Although chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) have distinct clinical features, both diseases may coexist in a patient because they share similar risk factors such as smoking, male sex, and old age. Patients with both emphysema in upper lung fields and diffuse ILD are diagnosed with combined pulmonary fibrosis and emphysema (CPFE), which causes substantial clinical deterioration. Patients with CPFE have higher mortality compared with patients who have COPD alone, but results have been inconclusive compared with patients who have idiopathic pulmonary fibrosis (IPF). Poor prognostic factors for CPFE include exacerbation, lung cancer, and pulmonary hypertension. The presence of interstitial lung abnormalities, which may be an early or mild form of ILD, is notable among patients with COPD, and is associated with poor prognosis. Various theories have been proposed regarding the pathophysiology of CPFE. Biomarker analyses have implied that this pathophysiology may be more closely associated with IPF development, rather than COPD or emphysema. Patients with CPFE should be advised to quit smoking and undergo routine lung function tests, and pulmonary rehabilitation may be helpful. Various pharmacologic agents may be beneficial in patients with CPFE, but further studies are needed.


2020 ◽  
Author(s):  
Konstantinos-Dionysios Alysandratos ◽  
Scott J. Russo ◽  
Anton Petcherski ◽  
Evan P. Taddeo ◽  
Rebeca Acín-Pérez ◽  
...  

SummaryThe incompletely understood pathogenesis of pulmonary fibrosis (PF) and lack of reliable preclinical disease models have limited development of effective therapies. An emerging literature now implicates alveolar epithelial type 2 cell (AEC2) dysfunction as an initiating pathogenic event in the onset of a variety of PF syndromes, including adult idiopathic pulmonary fibrosis (IPF) and childhood interstitial lung disease (chILD). However, inability to access primary AEC2s from patients, particularly at early disease stages, has impeded identification of disease-initiating mechanisms. Here we present an in vitro reductionist model system that permits investigation of epithelial-intrinsic events that lead to AEC2 dysfunction over time using patient-derived cells that carry a disease-associated variant, SFTPCI73T, known to be expressed solely in AEC2s. After generating patient-specific induced pluripotent stem cells (iPSCs) and engineering their gene-edited (corrected) counterparts, we employ directed differentiation to produce pure populations of syngeneic corrected and mutant AEC2s, which we expand >1015 fold in vitro, providing a renewable source of cells for modeling disease onset. We find that mutant iPSC-derived AEC2s (iAEC2s) accumulate large amounts of misprocessed pro-SFTPC protein which mistrafficks to the plasma membrane, similar to changes observed in vivo in the donor patient’s AEC2s. These changes result in marked reduction in AEC2 progenitor capacity and several downstream perturbations in AEC2 proteostatic and bioenergetic programs, including a late block in autophagic flux, accumulation of dysfunctional mitochondria with consequent time-dependent metabolic reprograming from oxidative phosphorylation to glycolysis, and activation of an NF-κB dependent inflammatory response. Treatment of SFTPCI73T expressing iAEC2s with hydroxychloroquine, a medication commonly prescribed to these patients, results in aggravation of autophagy perturbations and metabolic reprogramming. Thus, iAEC2s provide a patientspecific preclinical platform for modeling the intrinsic epithelial dysfunction associated with the inception of interstitial lung disease.


Sign in / Sign up

Export Citation Format

Share Document