Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission

2020 ◽  
Vol 61 (4) ◽  
pp. 814-825 ◽  
Author(s):  
Ruben Parra ◽  
Miguel A Paredes ◽  
Juana Labrador ◽  
Cláudia Nunes ◽  
Manuel A Coimbra ◽  
...  

Abstract Cell wall modification is integral to many plant developmental processes where cells need to separate, such as abscission. However, changes in cell wall composition during natural fruit abscission are poorly understood. In olive (Olea europaea L.), some cultivars such as ‘Picual’ undergo massive natural fruit abscission after fruit ripening. This study investigates the differences in cell wall polysaccharide composition and the localization of pectins and arabinogalactan protein (AGP) in the abscission zone (AZ) during cell separation to understand fruit abscission control in ‘Picual’ olive. To this end, immunogold labeling employing a suite of monoclonal antibodies to cell wall components (JIM13, LM5, LM6, LM19 and LM20) was investigated in olive fruit AZ. Cell wall polysaccharide extraction revealed that the AZ cell separation is related to the de-esterification and degradation of pectic polysaccharides. Moreover, ultrastructural localization showed that both esterified and unesterified homogalacturonans (HGs) localize mainly in the AZ cell walls, including the middle lamella and tricellular junction zones. Our results indicate that unesterified HGs are likely to contribute to cell separation in the olive fruit AZ. Similarly, immunogold labeling demonstrated a decrease in both galactose-rich and arabinose-rich pectins in AZ cell walls during ripe fruit abscission. In addition, AGPs were localized in the cell wall, plasma membrane and cytoplasm of AZ cells with lower levels of AGPs during ripe fruit abscission. This detailed temporal profile of the cell wall polysaccharide composition, and the pectins and AGP immunolocalization in the olive fruit AZ, offers new insights into cell wall remodeling during ripe fruit abscission.

2021 ◽  
Vol 12 ◽  
Author(s):  
Héctor L. Villalobos-Duno ◽  
Laura A. Barreto ◽  
Álvaro Alvarez-Aular ◽  
Héctor M. Mora-Montes ◽  
Nancy E. Lozoya-Pérez ◽  
...  

Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main causative agents of sporotrichosis, a human subcutaneous mycosis. Differences in virulence patterns are associated with each species but remain largely uncharacterized. The S. schenckii and S. brasiliensis cell wall composition and virulence are influenced by the culturing media, with little or no influence on S. globosa. By keeping constant the culturing media, we compared the cell wall composition of three S. schenckii and two S. brasiliensis strains, previously described as presenting different virulence levels on a murine model of infection. The cell wall composition of the five Sporothrix spp. strains correlated with the biochemical composition of the cell wall previously reported for the species. However, the rhamnose-to-β-glucan ratio exhibits differences among strains, with an increase in cell wall rhamnose-to-β-glucan ratio as their virulence increased. This relationship can be expressed mathematically, which could be an important tool for the determination of virulence in Sporothrix spp. Also, structural differences in rhamnomannan were found, with longer side chains present in strains with lower virulence reported for both species here studied, adding insight to the importance of this polysaccharide in the pathogenic process of these fungi.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1965
Author(s):  
Anna Milewska-Hendel ◽  
Katarzyna Sala ◽  
Weronika Gepfert ◽  
Ewa Kurczyńska

The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.


2001 ◽  
Vol 111 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Isabel Mafra ◽  
Barbara Lanza ◽  
Ana Reis ◽  
Vincenzo Marsilio ◽  
Cristina Campestre ◽  
...  

1968 ◽  
Vol 14 (7) ◽  
pp. 809-811 ◽  
Author(s):  
Chiu-Sheng Wang ◽  
Marvin N. Schwalb ◽  
Philip G. Miles

Mechanically isolated cell walls of normal homokaryons and the morphological mutants thin and puff were fractionated and hydrolyzed by chemical procedures. The yields of fractionated materials and the glucose/hexosamine ratios of acid hydrolysates were determined. Results of statistical analyses of the values obtained from these determinations indicated that single-gene mutations causing the thin and puff mutant forms of this fungus produce specific differences in the composition of cell walls.


2018 ◽  
Vol 19 (9) ◽  
pp. 2691 ◽  
Author(s):  
Michael Ogden ◽  
Rainer Hoefgen ◽  
Ute Roessner ◽  
Staffan Persson ◽  
Ghazanfar Khan

Nutrients are critical for plants to grow and develop, and nutrient depletion severely affects crop yield. In order to optimize nutrient acquisition, plants adapt their growth and root architecture. Changes in growth are determined by modifications in the cell walls surrounding every plant cell. The plant cell wall, which is largely composed of complex polysaccharides, is essential for plants to attain their shape and to protect cells against the environment. Within the cell wall, cellulose strands form microfibrils that act as a framework for other wall components, including hemicelluloses, pectins, proteins, and, in some cases, callose, lignin, and suberin. Cell wall composition varies, depending on cell and tissue type. It is governed by synthesis, deposition and remodeling of wall components, and determines the physical and structural properties of the cell wall. How nutrient status affects cell wall synthesis and organization, and thus plant growth and morphology, remains poorly understood. In this review, we aim to summarize and synthesize research on the adaptation of root cell walls in response to nutrient availability and the potential role of cell walls in nutrient sensing.


2016 ◽  
Vol 27 (6) ◽  
pp. 1002-1014 ◽  
Author(s):  
Jia Lin ◽  
Michael J. Wester ◽  
Matthew S. Graus ◽  
Keith A. Lidke ◽  
Aaron K. Neumann

The cell wall of Candida albicans is composed largely of polysaccharides. Here we focus on β-glucan, an immunogenic cell-wall polysaccharide whose surface exposure is often restricted, or “masked,” from immune recognition by Dectin-1 on dendritic cells (DCs) and other innate immune cells. Previous research suggested that the physical presentation geometry of β-glucan might determine whether it can be recognized by Dectin-1. We used direct stochastic optical reconstruction microscopy to explore the fine structure of β-glucan exposed on C. albicans cell walls before and after treatment with the antimycotic drug caspofungin, which alters glucan exposure. Most surface-accessible glucan on C. albicans yeast and hyphae is limited to isolated Dectin-1–binding sites. Caspofungin-induced unmasking caused approximately fourfold to sevenfold increase in total glucan exposure, accompanied by increased phagocytosis efficiency of DCs for unmasked yeasts. Nanoscopic imaging of caspofungin-unmasked C. albicans cell walls revealed that the increase in glucan exposure is due to increased density of glucan exposures and increased multiglucan exposure sizes. These findings reveal that glucan exhibits significant nanostructure, which is a previously unknown physical component of the host– Candida interaction that might change during antifungal chemotherapy and affect innate immune activation.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 378
Author(s):  
Jason S. Henry ◽  
Karen S. Renzaglia

Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the composition of cell wall polymers in transfer cells on both sides of the placenta. Sixteen monoclonal antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this moss. In general, placental transfer cell walls of P. patens contained fewer pectins and far fewer arabinogalactan proteins AGPs than those of the hornwort and liverwort. P. patens also lacked the differential labeling that is pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either side of the placenta of P. patens were relatively similar in composition, with slight variation in homogalacturonan HG pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers among the three bryophytes and between the two generations suggested that similarity in function and morphology of cell walls does not require a common cell wall composition. We propose that the specific developmental and life history traits of these plants may provide even more important clues in understanding the basis for these differences. This study significantly builds on our knowledge of cell wall composition in bryophytes in general and in transfer cells across plants.


2020 ◽  
Author(s):  
Svetlana Zamakhaeva ◽  
Catherine T. Chaton ◽  
Jeffrey S. Rush ◽  
Sowmya Ajay Castro ◽  
Alexander E. Yarawsky ◽  
...  

AbstractBacterial cell division is driven by a tubulin homolog FtsZ, which assembles into the Z-ring structure leading to the recruitment of the cell division machinery. In ovoid-shaped Gram-positive bacteria, such as streptococci, MapZ guides Z-ring positioning at cell equators through an, as yet, unknown mechanism. The cell wall of the important dental pathogen Streptococcus mutans is composed of peptidoglycan decorated with Serotype c Carbohydrates (SCCs). Here, we show that an immature form of SCC, lacking the recently identified glycerol phosphate (GroP) modification, coordinates Z-ring positioning. Pulldown assays using S. mutans cell wall combined with binding affinity analysis identified the major cell separation autolysin, AtlA, as an SCC binding protein. Importantly, AtlA binding to mature SCC is attenuated due to GroP modification. Using fluorescently-labeled AtlA, we mapped SCC distribution on the streptococcal surface to reveal that GroP-deficient immature SCCs are exclusively present at the cell poles and equators. Moreover, the equatorial GroP-deficient SCCs co-localize with MapZ throughout the S. mutans cell cycle. Consequently, in GroP-deficient mutant bacteria, proper AtlA localization is abrogated resulting in dysregulated cellular autolysis. In addition, these mutants display morphological abnormalities associated with MapZ mislocalization leading to Z-ring misplacement. Altogether, our data support a model in which GroP-deficient immature SCCs spatially coordinate the localization of AtlA and MapZ. This mechanism ensures cell separation by AtlA at poles and Z-ring alignment with the cell equator.Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document