scholarly journals Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana

2020 ◽  
Vol 61 (6) ◽  
pp. 1080-1094
Author(s):  
Fernanda Marchetti ◽  
Maximiliano Cainzos ◽  
Sofía Shevtsov ◽  
Juan Pablo Córdoba ◽  
Laure Dora Sultan ◽  
...  

Abstract The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5′ or 3′ transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.

2010 ◽  
Vol 108 (1) ◽  
pp. 415-420 ◽  
Author(s):  
Jana Prikryl ◽  
Margarita Rojas ◽  
Gadi Schuster ◽  
Alice Barkan

Pentatricopeptide repeat (PPR) proteins comprise a large family of helical repeat proteins that bind RNA and modulate organellar RNA metabolism. The mechanisms underlying the functions attributed to PPR proteins are unknown. We describe in vitro studies of the maize protein PPR10 that clarify how PPR10 modulates the stability and translation of specific chloroplast mRNAs. We show that recombinant PPR10 bound to its native binding site in the chloroplast atpI–atpH intergenic region (i) blocks both 5′→3′ and 3′→ 5 exoribonucleases in vitro; (ii) is sufficient to define the native processed atpH mRNA 5′-terminus in conjunction with a generic 5′→3′ exoribonuclease; and (iii) remodels the structure of the atpH ribosome-binding site in a manner that can account for PPR10’s ability to enhance atpH translation. In addition, we show that the minimal PPR10-binding site spans 17 nt. We propose that the site-specific barrier and RNA remodeling activities of PPR10 are a consequence of its unusually long, high-affinity interface with single-stranded RNA, that this interface provides a functional mimic to bacterial small RNAs, and that analogous activities underlie many of the biological functions that have been attributed to PPR proteins.


2021 ◽  
Vol 118 (15) ◽  
pp. e2009329118
Author(s):  
Hauke S. Hillen ◽  
Dmitriy A. Markov ◽  
Ireneusz D. Wojtas ◽  
Katharina B. Hofmann ◽  
Michael Lidschreiber ◽  
...  

Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5′ capping and 3′ polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3′-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3′-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Jin-Yu Liu ◽  
Ya-Jing Chen ◽  
Huan-Hui Feng ◽  
Zhan-Li Chen ◽  
Yun-Long Wang ◽  
...  

AbstractOncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


Virology ◽  
1979 ◽  
Vol 94 (2) ◽  
pp. 243-253 ◽  
Author(s):  
D.W. Mossop ◽  
R.I.B. Francki
Keyword(s):  

2002 ◽  
Vol 74 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Lanny S. Liebeskind ◽  
Jiri Srogl ◽  
Cecile Savarin ◽  
Concepcion Polanco

Given the stability of the bond between a mercaptide ligand and various redox-active metals, it is of interest that Nature has evolved significant metalloenzymatic processes that involve key interactions of sulfur-containing functionalities with metals such as Ni, Co, Cu, and Fe. From a chemical perspective, it is striking that these metals can function as robust biocatalysts in vivo, even though they are often "poisoned" as catalysts in vitro through formation of refractory metal thiolates. Insight into the nature of this chemical discrepancy is under study in order to open new procedures in synthetic organic and organometallic chemistry.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 759-769 ◽  
Author(s):  
F P Yuan ◽  
X Li ◽  
J Lin ◽  
C Schwabe ◽  
E E Büllesbach ◽  
...  

LH receptor knockout (LhrKO) male mice exhibit a bilateral cryptorchidism resulting from a developmental defect in the gubernaculum during the inguinoscrotal phase of testis descent, which is corrected by testosterone replacement therapy (TRT).In vivoandin vitroexperiments were conducted to investigate the roles of the androgen receptor (AR) and RXFP2 signals in regulation of gubernacular development inLhrKO animals. This study demonstrated that AR and RXFP2 proteins were expressed in the gubernaculum during the entire postnatal period. TRT normalized gubernacular RXFP2 protein levels inLhrKO mice. Organ and primary cell cultures of gubernacula showed that 5α-dihydrotestosterone (DHT) upregulated the expression ofRxfp2which was abolished by the addition of an AR antagonist, flutamide. A single s.c. testosterone injection also led to a significant increase inRxfp2mRNA levels in a time-dependent fashion inLhrKO animals. DHT, natural and synthetic insulin-like peptide 3 (INSL3), or relaxin alone did not affect proliferation of gubernacular mesenchymal cells, while co-treatments of DHT with either INSL3 or relaxin resulted in an increase in cell proliferation, and they also enhanced the mesenchymal cell differentiation toward the myogenic pathway, which included a decrease in a mesenchymal cell marker, CD44 and the expression of troponin. These effects were attenuated by the addition of flutamide, siRNA-mediatedRxfp2knockdown, or by an INSL3 antagonist. Co-administration of an INSL3 antagonist curtailed TRT-induced inguinoscrotal testis descent inLhrKO mice. Our findings indicate that the RXFP2 signaling pathway plays an important role in mediating androgen action to stimulate gubernaculum development during inguinoscrotal testis descent.


Sign in / Sign up

Export Citation Format

Share Document