Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition

2021 ◽  
Author(s):  
Zhilei Mao ◽  
Xuxu Wei ◽  
Ling Li ◽  
Peng Xu ◽  
Jingyi Zhang ◽  
...  

Abstract Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


2021 ◽  
Vol 22 (10) ◽  
pp. 5160
Author(s):  
Jeffrey L. Barr ◽  
Pingwei Zhao ◽  
G. Cristina Brailoiu ◽  
Eugen Brailoiu

Orexin A, an endogenous peptide involved in several functions including reward, acts via activation of orexin receptors OX1 and OX2, Gq-coupled GPCRs. We examined the effect of a selective OX1 agonist, OXA (17-33) on cytosolic calcium concentration, [Ca2+]i, in neurons of nucleus accumbens, an important area in the reward circuit. OXA (17-33) increased [Ca2+]i in a dose-dependent manner; the effect was prevented by SB-334867, a selective OX1 receptors antagonist. In Ca2+-free saline, the OXA (17-33)-induced increase in [Ca2+]i was not affected by pretreatment with bafilomycin A1, an endo-lysosomal calcium disrupter, but was blocked by 2-APB and xestospongin C, antagonists of inositol-1,4,5-trisphosphate (IP3) receptors. Pretreatment with VU0155056, PLD inhibitor, or BD-1047 and NE-100, Sigma-1R antagonists, reduced the [Ca2+]i response elicited by OXA (17-33). Cocaine potentiated the increase in [Ca2+]i by OXA (17-33); the potentiation was abolished by Sigma-1R antagonists. Our results support an additional signaling mechanism for orexin A-OX1 via choline-Sigma-1R and a critical role for Sigma-1R in the cocaine–orexin A interaction in nucleus accumbens neurons.


2019 ◽  
Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

AbstractGibberellins (GAs) play important roles in the regulation of plant growth and development. The green evolution geneSD1encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of howSD1/OsGA20ox2expression is regulated remains unclear. Here we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor ofOsGA20ox2.ZFP207was mainly accumulated in young tissues and more specifically in culm nodes.ZFP207-overexpression (ZFP207OE) plants displayed semi-dwarfism phenotype and small grains by modulating cell length. RNA interference ofZFP207caused higher plant and longer grains. The endogenous bioactive GA levels were significantly reduced inZFP207OEplants and application of exogenous GA3rescued the semi-dwarf phenotype. Thein vivoandin vitrostudies showed that ZFP207 repressed the expression ofOsGA20ox2via binding to its promoter region. Together, ZFP207 acts as a transcriptional repressor of gibberellins biosynthesis and it may play a critical role in plant growth and development through fine-tuning GA biosynthesis in rice.


2019 ◽  
Vol 218 (11) ◽  
pp. 3663-3680 ◽  
Author(s):  
Wei-Cheng Su ◽  
Yi-Hsiu Lin ◽  
Martin Pagac ◽  
Chao-Wen Wang

Seipin is known for its critical role in controlling lipid droplet (LD) assembly at the LD-forming subdomain of the endoplasmic reticulum (ER). Here, we identified a new function of seipin as a negative regulator for sphingolipid production. We show that yeast cells lacking seipin displayed altered sensitivity to sphingolipid inhibitors, accumulated sphingoid precursors and intermediates, and increased serine palmitoyltransferase (SPT) and fatty acid (FA) elongase activities. Seipin associated with SPT and FA elongase, and the interaction was reduced by inhibitors for sphingolipid synthesis in a concentration-dependent manner. We further show that the interactions of seipin with SPT and FA elongase occurred at ER–LD contacts and were likely regulated differentially. Further evidence indicated that LD biogenesis was intact when SPT activity was blocked, whereas excess sphingoid intermediates may affect LD morphology. Expression of human seipin rescued the altered sphingolipids in yeast seipin mutants, suggesting that the negative regulation of sphingolipid synthesis by seipin is likely an evolutionarily conserved process.


2019 ◽  
Vol 20 (12) ◽  
pp. 2900 ◽  
Author(s):  
Wentao Gou ◽  
Xi Li ◽  
Shaoying Guo ◽  
Yunfeng Liu ◽  
Faqiang Li ◽  
...  

Autophagy is a highly evolutionarily-conserved catabolic process facilitating the development and survival of organisms which have undergone favorable and/or stressful conditions, in particular the plant. Accumulating evidence has implicated that autophagy is involved in growth and development, as well as responses to various stresses in plant. Similarly, phytohormones also play a pivotal role in the response to various stresses in addition to the plant growth and development. However, the relationship between autophagy and phytohormones still remains poorly understood. Here, we review advances in the crosstalk between them upon various environmental stimuli. We also discuss how autophagy coordinates the phytohormones to regulate plant growth and development. We propose that unraveling the regulatory role(s) of autophagy in modulating the homeostasis of phytohormones would benefit crop breeding and improvement under variable environments, in particular under suboptimal conditions.


Blood ◽  
2012 ◽  
Vol 120 (8) ◽  
pp. 1601-1612 ◽  
Author(s):  
Takashi Asai ◽  
Yan Liu ◽  
Silvana Di Giandomenico ◽  
Narae Bae ◽  
Delphine Ndiaye-Lobry ◽  
...  

Abstract We recently defined a critical role for p53 in regulating the quiescence of adult hematopoietic stem cells (HSCs) and identified necdin as a candidate p53 target gene. Necdin is a growth-suppressing protein and the gene encoding it is one of several that are deleted in patients with Prader-Willi syndrome. To define the intrinsic role of necdin in adult hematopoiesis, in the present study, we transplanted necdin-null fetal liver cells into lethally irradiated recipients. We show that necdin-null adult HSCs are less quiescent and more proliferative than normal HSCs, demonstrating the similar role of necdin and p53 in promoting HSC quiescence during steady-state conditions. However, wild-type recipients repopulated with necdin-null hematopoietic stem/progenitor cells show enhanced sensitivity to irradiation and chemotherapy, with increased p53-dependent apoptosis, myelosuppression, and mortality. Necdin controls the HSC response to genotoxic stress via both cell-cycle–dependent and cell-cycle–independent mechanisms, with the latter occurring in a Gas2L3-dependent manner. We conclude that necdin functions as a molecular switch in adult hematopoiesis, acting in a p53-like manner to promote HSC quiescence in the steady state, but suppressing p53-dependent apoptosis in response to genotoxic stress.


2020 ◽  
Vol 22 (1) ◽  
pp. 2
Author(s):  
Guihong Liang ◽  
Haixing Song ◽  
Yan Xiao ◽  
Zhenhua Zhang

Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.


Sign in / Sign up

Export Citation Format

Share Document