Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V

2019 ◽  
Vol 32 (10) ◽  
pp. 443-457 ◽  
Author(s):  
Filip Claes ◽  
Stanislav Rudyak ◽  
Angela S Laird ◽  
Nikolaos Louros ◽  
Jacinte Beerten ◽  
...  

Abstract The accumulation of toxic protein aggregates is thought to play a key role in a range of degenerative pathologies, but it remains unclear why aggregation of polypeptides into non-native assemblies is toxic and why cellular clearance pathways offer ineffective protection. We here study the A4V mutant of SOD1, which forms toxic aggregates in motor neurons of patients with familial amyotrophic lateral sclerosis (ALS). A comparison of the location of aggregation prone regions (APRs) and Hsp70 binding sites in the denatured state of SOD1 reveals that ALS-associated mutations promote exposure of the APRs more than the strongest Hsc/Hsp70 binding site that we could detect. Mutations designed to increase the exposure of this Hsp70 interaction site in the denatured state promote aggregation but also display an increased interaction with Hsp70 chaperones. Depending on the cell type, in vitro this resulted in cellular inclusion body formation or increased clearance, accompanied with a suppression of cytotoxicity. The latter was also observed in a zebrafish model in vivo. Our results suggest that the uncontrolled accumulation of toxic SOD1A4V aggregates results from insufficient detection by the cellular surveillance network.

2020 ◽  
Vol 9 (1) ◽  
pp. 261 ◽  
Author(s):  
Tereza Filipi ◽  
Zuzana Hermanova ◽  
Jana Tureckova ◽  
Ondrej Vanatko ◽  
Miroslava Anderova

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.


2019 ◽  
Vol 28 (21) ◽  
pp. 3584-3599 ◽  
Author(s):  
Matthew G Williamson ◽  
Mattéa J Finelli ◽  
James N Sleigh ◽  
Amy Reddington ◽  
David Gordon ◽  
...  

Abstract A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiaki Furukawa

Dominant mutations in a Cu, Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS). While it remains controversial how SOD1 mutations lead to onset and progression of the disease, manyin vitroandin vivostudies have supported a gain-of-toxicity mechanism where pathogenic mutations contribute to destabilizing a native structure of SOD1 and thus facilitate misfolding and aggregation. Indeed, abnormal accumulation of SOD1-positive inclusions in spinal motor neurons is a pathological hallmark in SOD1-related familial ALS. Furthermore, similarities in clinical phenotypes and neuropathology of ALS cases with and without mutations insod1gene have implied a disease mechanism involving SOD1 common to all ALS cases. Although pathogenic roles of wild-type SOD1 in sporadic ALS remain controversial, recent developments of novel SOD1 antibodies have made it possible to characterize wild-type SOD1 under pathological conditions of ALS. Here, I have briefly reviewed recent progress on biochemical and immunohistochemical characterization of wild-type SOD1 in sporadic ALS cases and discussed possible involvement of wild-type SOD1 in a pathomechanism of ALS.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf8660
Author(s):  
Nicol Birsa ◽  
Agnieszka M. Ule ◽  
Maria Giovanna Garone ◽  
Brian Tsang ◽  
Francesca Mattedi ◽  
...  

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2773
Author(s):  
Hsiao-Chien Ting ◽  
Hui-I Yang ◽  
Horng-Jyh Harn ◽  
Ing-Ming Chiu ◽  
Hong-Lin Su ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2413
Author(s):  
Azin Amin ◽  
Nirma D. Perera ◽  
Philip M. Beart ◽  
Bradley J. Turner ◽  
Fazel Shabanpoor

Over the past 20 years, there has been a drastically increased understanding of the genetic basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved intracellular “clearance” system delivering misfolded proteins, aggregates, and damaged organelles to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been examined or are being developed as potential treatments for ALS to date, and discuss potential therapeutic strategies for targeting autophagy in ALS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michael J. Strong ◽  
Neil S. Donison ◽  
Kathryn Volkening

There is increasing acceptance that amyotrophic lateral sclerosis (ALS), classically considered a neurodegenerative disease affecting almost exclusively motor neurons, is syndromic with both clinical and biological heterogeneity. This is most evident in its association with a broad range of neuropsychological, behavioral, speech and language deficits [collectively termed ALS frontotemporal spectrum disorder (ALS-FTSD)]. Although the most consistent pathology of ALS and ALS-FTSD is a disturbance in TAR DNA binding protein 43 kDa (TDP-43) metabolism, alterations in microtubule-associated tau protein (tau) metabolism can also be observed in ALS-FTSD, most prominently as pathological phosphorylation at Thr175 (pThr175tau). pThr175 has been shown to promote exposure of the phosphatase activating domain (PAD) in the tau N-terminus with the consequent activation of GSK3β mediated phosphorylation at Thr231 (pThr231tau) leading to pathological oligomer formation. This pathological cascade of tau phosphorylation has been observed in chronic traumatic encephalopathy with ALS (CTE-ALS) and in both in vivo and in vitro experimental paradigms, suggesting that it is of critical relevance to the pathobiology of ALS-FTSD. It is also evident that the co-existence of alterations in the metabolism of TDP-43 and tau acts synergistically in a rodent model to exacerbate the pathology of either.


Author(s):  
Pengcheng Ma ◽  
Yuwei Li ◽  
Huishan Wang ◽  
Bingyu Mao

Abstract TDP43 pathology is seen in a large majority of amyotrophic lateral sclerosis (ALS) cases, suggesting a central pathogenic role of this regulatory protein. Clarifying the molecular mechanism controlling TDP43 stability and subcellular location might provide important insights into ALS therapy. The ubiquitin E3 ligase RNF220 is involved in different neural developmental processes through various molecular targets in the mouse. Here, we report that the RNF220+/- mice showed progressively decreasing mobility to different extents, some of which developed typical ALS pathological characteristics in spinal motor neurons, including TDP43 cytoplasmic accumulation, atrocytosis, muscle denervation, and atrophy. Mechanistically, RNF220 interacts with TDP43 in vitro and in vivo and promotes its polyubiquitination and proteasomal degradation. In conclusion, we propose that RNF220 might be a modifier of TDP43 function in vivo and contribute to TDP43 pathology in neurodegenerative disease like ALS.


2021 ◽  
Author(s):  
Lydia M Castelli ◽  
Alvaro Sanchez-Martinez ◽  
Ya-Hui Lin ◽  
Santosh Kumar Upadhyay ◽  
Adrian Higginbottom ◽  
...  

Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum of incurable debilitating neurodegenerative diseases. Here, we report a novel ALS/FTD drug concept with in vivo and in vitro therapeutic activity in preclinical models of C9ORF72-ALS/FTD. Our data demonstrate that supplementation or oral administration of a cell-penetrant peptide, which competes with the SRSF1:NXF1 interaction, confers neuroprotection by inhibiting the nuclear export of pathological C9ORF72-repeat transcripts in various models of disease including primary neurons, patient-derived motor neurons and Drosophila. Our drug-like rationale for disrupting the nuclear export of microsatellite repeat transcripts in neurological disorders provides a promising alternative to conventional small molecule inhibitors often limited by poor blood-brain barrier penetrance.


Sign in / Sign up

Export Citation Format

Share Document