scholarly journals Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model

2020 ◽  
Vol 7 (4) ◽  
pp. 413-425
Author(s):  
Hamad Alsaykhan ◽  
Jennifer Z Paxton

Abstract Musculoskeletal tissue interfaces are a common site of injury in the young, active populations. In particular, the interface between the musculoskeletal tissues of tendon and bone is often injured and to date, no single treatment has been able to restore the form and function of damaged tissue at the bone–tendon interface. Tissue engineering and regeneration hold great promise for the manufacture of bespoke in vitro models or implants to be used to advance repair and so this study investigated the material, orientation and culture choices for manufacturing a reproducible 3D model of a musculoskeletal interface between tendon and bone cell populations. Such models are essential for future studies focussing on the regeneration of musculoskeletal interfaces in vitro. Cell-encapsulated fibrin hydrogels, arranged in a horizontal orientation though a simple moulding procedure, were shown to best support cellular growth and migration of cells to form an in vitro tendon–bone interface. This study highlights the importance of acknowledging the material and technical challenges in establishing co-cultures and suggests a reproducible methodology to form 3D co-cultures between tendon and bone, or other musculoskeletal cell types, in vitro.

2020 ◽  
Author(s):  
Wei Feng ◽  
Hannah Schriever ◽  
Shan Jiang ◽  
Abha Bais ◽  
Dennis Kostka ◽  
...  

AbstractHeart organoids have the potential to generate primary heart-like anatomical structures and hold great promise as in vitro models for cardiac disease. However, their properties have not yet been carefully studied, which hinders a wider spread application. Here we report the development of differentiation systems for ventricular and atrial heart organoids, enabling the study of heart disease with chamber defects. We show that our systems generate organoids comprising of major cardiac cell types, and we used single cell RNA sequencing together with sample multiplexing to characterize the cells we generate. To that end, we also developed a machine learning label transfer approach lever-aging cell type, chamber, and laterality annotations available for primary human fetal heart cells. We then used this model to analyze organoid cells from an isogeneic line carrying an Ebstein’s anomaly associated genetic variant, and we successfully recapitulated the disease’s atrialized ventricular defects. In summary, we have established a workflow integrating heart organoids and computational analysis to model heart development in normal and disease states.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 7 (2) ◽  
pp. 36 ◽  
Author(s):  
João P. Cotovio ◽  
Tiago G. Fernandes

Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


2018 ◽  
Vol 8 (8) ◽  
pp. 151 ◽  
Author(s):  
K. Bergen ◽  
M. Frödin ◽  
C. von Gertten ◽  
A. Sandberg-Nordqvist ◽  
M. Sköld

Following traumatic brain injuries (TBI), insulin-like growth factor (IGF) is cortically widely upregulated. This upregulation has a potential role in the recovery of neuronal tissue, plasticity, and neurotrophic activity, though the molecular mechanisms involved in IGF regulation and the exact role of IGF after TBI remain unclear. Vitronectin (VN), an extracellular matrix (ECM) molecule, has recently been shown to be of importance for IGF-mediated cellular growth and migration. Since VN is downregulated after TBI, we hypothesized that insufficient VN levels after TBI impairs the potential beneficial activity of IGF. To test if vitronectin and IGF-1/IGFBP-2 could contribute to neurite growth, we cultured hippocampal neurons on ± vitronectin-coated coverslips and them treated with ± IGF-1/IGF binding protein 2 (IGFBP-2). Under same conditions, cell cultures were also subjected to in vitro trauma to investigate differences in the posttraumatic regenerative capacity with ± vitronectin-coated coverslips and with ± IGF-1/IGFBP-2 treatment. In both the control and trauma situations, hippocampal neurons showed a stronger growth pattern on vitronectin than on the control substrate. Surprisingly, the addition of IGF-1/IGFBP-2 showed a decrease in neurite growth. Since neurite growth was measured as the number of neurites per area, we hypothesized that IGF-1/IGFBP-2 contributes to the polarization of neurons and thus induced a less dense neurite network after IGF-1/IGFBP-2 treatment. This hypothesis could not be confirmed and we therefore conclude that vitronectin has a positive effect on neurite growth in vitro both under normal conditions and after trauma, but that addition of IGF-1/IGFBP-2 does not have a positive additive effect.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Lijuan Li ◽  
Lixia An ◽  
Lifang Li ◽  
Yongjuan Zhao

Sphingolipids are formed via the metabolism of sphingomyelin, aconstituent of the plasma membrane, or by denovosynthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in in?ammation. This can involve, for example, activation of pro-in?ammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-in?ammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-af?nity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on in?ammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in in?ammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and in?ammatory bowel disease, which involve important in?ammatory components. A signi?cant body of research now indicates that sphingolipids are intimately involved in the in?ammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological in?ammation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi220-vi220
Author(s):  
Hasan Alrefai ◽  
Andee Beierle ◽  
Lauren Nassour ◽  
Nicholas Eustace ◽  
Zeel Patel ◽  
...  

Abstract BACKGROUND The GBM tumor microenvironment (TME) is comprised of a plethora of cancerous and non-cancerous cells that contribute to GBM growth, invasion, and chemoresistance. In-vitro models of GBM typically fail to incorporate multiple cell types. Others have addressed this problem by employing 3D bioprinting to incorporate astrocytes and macrophages in an extracellular matrix; however, they used serum-containing media and classically polarized anti-inflammatory macrophages. Serum has been shown to cause GBM brain-tumor initiating cells to lose their stem-like properties, highlighting the importance of excluding it from these models. Additionally, tumor-associated macrophages (TAMs) do not adhere to the traditional M2 phenotype. METHODS THP-1 monocytes and normal human astrocytes (NHAs) were transitioned into serum-free HL-1 and neurobasal-based media, respectively. Monocytes were stimulated towards a macrophage-like state with PMA and polarized by co-culturing them with GBM patient-derived xenograft(PDX) lines, using a transwell insert. CD206 expression was used to validate polarization and a cytokine array was used to characterize the cells. RESULTS There was no difference in proliferation rates at 72 hours for THP-1 monocytes grown in serum-free HL-1 media compared to serum-containing RPMI 1640 (p > 0.95). Macrophages polarized via transwell inserts expressed the lymphocyte chemoattractant protein, CCL2, whereas resting(M0), pro-inflammatory(M1), and anti-inflammatory(M2) macrophages did not. Additionally, these macrophages expressed more CXCL1 and IL-1ß relative to M1 macrophages. We have also demonstrated a method to maintain a tri-culture model of GBM PDX cells, NHAs, and TAMs in a serum-free media that supports the growth/maintenance of all cell types. CONCLUSIONS We have demonstrated a novel method by which we can polarize macrophages towards a tumor-supportive phenotype that differs in cytokine expression from traditionally polarized macrophages. This higher-fidelity method of modeling TAMs in GBM can aid in the development of targeted therapeutics that may one day enter the clinic in hopes of improving outcomes in GBM.


2020 ◽  
Vol 57 (3) ◽  
pp. 358-368
Author(s):  
Radhakrishna Sura ◽  
Terry Van Vleet ◽  
Brian R. Berridge

High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


Sign in / Sign up

Export Citation Format

Share Document