scholarly journals Neurite Growth and Polarization on Vitronectin Substrate after in Vitro Trauma is not Enhanced after IGF Treatment

2018 ◽  
Vol 8 (8) ◽  
pp. 151 ◽  
Author(s):  
K. Bergen ◽  
M. Frödin ◽  
C. von Gertten ◽  
A. Sandberg-Nordqvist ◽  
M. Sköld

Following traumatic brain injuries (TBI), insulin-like growth factor (IGF) is cortically widely upregulated. This upregulation has a potential role in the recovery of neuronal tissue, plasticity, and neurotrophic activity, though the molecular mechanisms involved in IGF regulation and the exact role of IGF after TBI remain unclear. Vitronectin (VN), an extracellular matrix (ECM) molecule, has recently been shown to be of importance for IGF-mediated cellular growth and migration. Since VN is downregulated after TBI, we hypothesized that insufficient VN levels after TBI impairs the potential beneficial activity of IGF. To test if vitronectin and IGF-1/IGFBP-2 could contribute to neurite growth, we cultured hippocampal neurons on ± vitronectin-coated coverslips and them treated with ± IGF-1/IGF binding protein 2 (IGFBP-2). Under same conditions, cell cultures were also subjected to in vitro trauma to investigate differences in the posttraumatic regenerative capacity with ± vitronectin-coated coverslips and with ± IGF-1/IGFBP-2 treatment. In both the control and trauma situations, hippocampal neurons showed a stronger growth pattern on vitronectin than on the control substrate. Surprisingly, the addition of IGF-1/IGFBP-2 showed a decrease in neurite growth. Since neurite growth was measured as the number of neurites per area, we hypothesized that IGF-1/IGFBP-2 contributes to the polarization of neurons and thus induced a less dense neurite network after IGF-1/IGFBP-2 treatment. This hypothesis could not be confirmed and we therefore conclude that vitronectin has a positive effect on neurite growth in vitro both under normal conditions and after trauma, but that addition of IGF-1/IGFBP-2 does not have a positive additive effect.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


2008 ◽  
Vol 93 (6) ◽  
pp. 2375-2382 ◽  
Author(s):  
A. W. Horne ◽  
S. van den Driesche ◽  
A. E. King ◽  
S. Burgess ◽  
M. Myers ◽  
...  

Abstract Context: Ectopic pregnancy is common but remains difficult to diagnose accurately. There is no serum test to differentiate ectopic from intrauterine gestation. Objective: Our objective was to investigate differential gene expression in decidualized endometrium of ectopic pregnancy. Design: Tissue and serum analysis informed by microarray study was performed. Setting: The study was performed at a large United Kingdom teaching hospital. Patients or Other Participants: Women undergoing surgical termination of pregnancy (n = 8), evacuation of uterus for miscarriage (n = 6), and surgery for tubal ectopic pregnancy (n = 11) were included in the study. Endometrium was collected from normally cycling women undergoing hysterectomy. Interventions: Decidualized endometrium was subjected to microarray analysis, morphological assessment, and immunohistochemistry. Endometrial stromal fibroblasts were cultured in the presence of decidualizing stimuli. Main Outcome Measures: Differential expression of potentially secreted molecules was calculated. Results: Inhibin/activin β-B expression was lower in decidualized endometrium from ectopic pregnancies when compared with that of ongoing pregnancies (P < 0.01) or miscarriages (P < 0.01). The localization of the β-B subunit was more marked in decidualized than nondecidualized stroma. Decidualization of stromal fibroblasts in vitro was associated with increased β-B expression (P < 0.05). Endometrial stroma of ectopic pregnancies was less decidualized morphologically (P < 0.05), with lower prolactin (P < 0.01) and IGF binding protein-1 (P < 0.005) expression. Serum activin B was lower in ectopic pregnancies (P < 0.005) than in intrauterine pregnancies, whereas there was no difference in progesterone concentrations. Conclusions: Despite similar concentrations of progesterone, the endometrium of ectopic pregnancies is less decidualized than intrauterine pregnancies. Expression of the β-B subunit is related to decidualization and can be detected in the circulation as activin B. Serum activin B concentrations are lower in ectopic pregnancy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuehan Bi ◽  
Xiao Lv ◽  
Dajiang Liu ◽  
Hongtao Guo ◽  
Guang Yao ◽  
...  

AbstractOvarian cancer is a common gynecological malignant tumor with a high mortality rate and poor prognosis. There is inadequate knowledge of the molecular mechanisms underlying ovarian cancer. We examined the expression of methyltransferase-like 3 (METTL3) in tumor specimens using RT-qPCR, immunohistochemistry, and Western blot analysis, and tested the methylation of METTL3 by MSP. Levels of METTL3, miR-1246, pri-miR-1246 and CCNG2 were then analyzed and their effects on cell biological processes were also investigated, using in vivo assay to validate the in vitro findings. METTL3 showed hypomethylation and high expression in ovarian cancer tissues and cells. Hypomethylation of METTL3 was pronounced in ovarian cancer samples, which was negatively associated with patient survival. Decreased METTL3 inhibited the proliferation and migration of ovarian cancer cells and promoted apoptosis, while METTL3 overexpression exerted opposite effects. Mechanistically, METTL3 aggravated ovarian cancer by targeting miR-1246, while miR-1246 targeted and inhibited CCNG2 expression. High expression of METTL3 downregulated CCNG2, promoted the metabolism and growth of transplanted tumors in nude mice, and inhibited apoptosis. The current study highlights the promoting role of METTL3 in the development of ovarian cancer, and presents new targets for its treatment.


2009 ◽  
Vol 161 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Sumito Dateki ◽  
Kazuko Hizukuri ◽  
Toshiaki Tanaka ◽  
Noriyuki Katsumata ◽  
Paravee Katavetin ◽  
...  

ContexAlthough GH values measured by an immunoassay usually reflect GH bioactivities, discrepancy exists between immunoactivity and bioactivity in a rare condition known as ‘bioinactive GH’.ObjectiveTo report an immunologically anomalous but considerably bioactive GH.MethodsWe performed mutational and functional analyses of GH1 in a 7-year-old Japanese boy with short stature (−3.0 s.d.) in whom serum GH values measured with a Tosoh immunoassay kit were all undetectable in three provocation tests, whereas urine GH value measured with a Hitachi immunoassay kit was within the normal range. Serum IGF-1 was at a low-normal range, and IGF-binding protein-3 was below the normal range.ResultsMutation analysis showed a missense GH produced by a novel GH1 mutation (p.D116E) of paternal origin and a frameshift mutation (p.Q68fsX106) of maternal origin. Genotype–phenotype correlations in this family and in vitro functional studies indicated that the p.D116E-GH was immeasurable with the Tosoh kit but was measurable, though maybe not precise, with a Daiichi kit, and had a reduced in vivo bioactivity. The p.Q68fsX106 yielded no GH protein.ConclusionsThe results suggest that the p.D116E affects the GH epitope primarily recognized by the Tosoh kit but not by the Hitachi or the Daiichi kits, thereby producing an immunologically anomalous but considerably bioactive GH. The presence of such a hormone discordant for immunoactivity and bioactivity should be kept in mind, to allow for an appropriate assessment of endocrine data.


1988 ◽  
Vol 118 (2) ◽  
pp. 317-328 ◽  
Author(s):  
S. C. Bell ◽  
S. R. Patel ◽  
J. A. Jackson ◽  
G. T. Waites

ABSTRACT Pregnancy-associated endometrial α1-globulin (α1-PEG) is quantitatively the major secretory protein product, synthesized and secreted in vitro, of the human decidualized endometrium during pregnancy. This protein has been purified from cytosolic extracts of this tissue and has now been characterized as a 32 kDa somatomedin/insulin-like growth factor (IGF)-binding protein. Immunoreactive α1-PEG isolated from amniotic fluid exhibited identical physiochemical properties and IGF-I-binding characteristics. In cytosolic extracts of pregnancy endometrium, in incubation medium of this tissue and in amniotic fluid, the 32 kDa protein represented the major α1-PEG immunoreactive protein and major IGF-I-binding component. Purified α1-PEG and incubation medium of pregnancy endometrium competed for IGF-I with placental membrane IGF receptors in vitro. The implications of the endometrial source of IGF-I-binding protein are dicussed with reference to the origin of the amniotic fluid and serum small Mr IGF-binding protein and to the suggested paracrine effect upon trophoblast proliferation. J. Endocr. (1988) 118, 317–328


2007 ◽  
Vol 18 (11) ◽  
pp. 4327-4342 ◽  
Author(s):  
Frédéric Causeret ◽  
Tom Jacobs ◽  
Mami Terao ◽  
Owen Heath ◽  
Mikio Hoshino ◽  
...  

The correct morphology and migration of neurons, which is essential for the normal development of the nervous system, is enabled by the regulation of their cytoskeletal elements. We reveal that Neurabin-I, a neuronal-specific F-actin–binding protein, has an essential function in the developing forebrain. We show that gain and loss of Neurabin-I expression affect neuronal morphology, neurite outgrowth, and radial migration of differentiating cortical and hippocampal neurons, suggesting that tight regulation of Neurabin-I function is required for normal forebrain development. Importantly, loss of Neurabin-I prevents pyramidal neurons from migrating into the cerebral cortex, indicating its essential role during early stages of corticogenesis. We demonstrate that in neurons Rac1 activation is affected by the expression levels of Neurabin-I. Furthermore, the Cdk5 kinase, a key regulator of neuronal migration and morphology, directly phosphorylates Neurabin-I and controls its association with F-actin. Mutation of the Cdk5 phosphorylation site reduces the phenotypic consequences of Neurabin-I overexpression both in vitro and in vivo, suggesting that Neurabin-I function depends, at least in part, on its phosphorylation status. Together our findings provide new insight into the signaling pathways responsible for controlled changes of the F-actin cytoskeleton that are required for normal development of the forebrain.


Sign in / Sign up

Export Citation Format

Share Document