scholarly journals Individual differences in resting-state connectivity and giving social support: implications for health

2019 ◽  
Vol 15 (10) ◽  
pp. 1076-1085 ◽  
Author(s):  
Tristen K Inagaki ◽  
Meghan L Meyer

Abstract There is a growing appreciation for the health benefits of giving support, though variability in such behavior exists. Based on the possibility that the dorsomedial (DMPFC) default network subsystem is associated with social thinking and behavior, integrity of this subsystem may facilitate giving support to others. The current study tested associations between DMPFC subsystem connectivity at rest and tendencies related to giving support. During a functional magnetic resonance imaging session, 45 participants completed an emotional social cues task, a resting-state scan and self-report measures of social support. Supportive behavior during the month following the scan was also assessed. Greater DMPFC subsystem connectivity at rest was associated with greater support giving (though not receiving or perceiving support) at the time of the scan and one month later. Results held after adjusting for extraversion. In addition, greater resting-state DMPFC subsystem connectivity was associated with attenuated dorsal anterior cingulate cortex, anterior insula and amygdala activity to others’ negative emotional social cues, suggesting that DMPFC subsystem integrity at rest is also associated with the dampened withdrawal response proposed to facilitate care for others in need. Together, results begin to hint at an additional role for the ‘default’ social brain: giving support to others.

2017 ◽  
Vol 30 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Tomer Shechner ◽  
Nathan A. Fox ◽  
Jamie A. Mash ◽  
Johanna M. Jarcho ◽  
Gang Chen ◽  
...  

AbstractBehavioral inhibition (BI) is a temperament identified in early childhood that is associated with risk for anxiety disorders, yet only about half of behaviorally inhibited children manifest anxiety later in life. We compared brain function and behavior during extinction recall in a sample of nonanxious young adults characterized in childhood with BI (n = 22) or with no BI (n = 28). Three weeks after undergoing fear conditioning and extinction, participants completed a functional magnetic resonance imaging extinction recall task assessing memory and threat differentiation for conditioned stimuli. While self-report and psychophysiological measures of differential conditioning and extinction were similar across groups, BI-related differences in brain function emerged during extinction recall. Childhood BI was associated with greater activation in subgenual anterior cingulate cortex in response to cues signaling safety. This pattern of results may reflect neural correlates that promote resilience against anxiety in a temperamentally at-risk population.


2020 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Claudio Imperatori ◽  
Chiara Massullo ◽  
Giuseppe Alessio Carbone ◽  
Angelo Panno ◽  
Marta Giacchini ◽  
...  

An increasing body of experimental data have suggested that aberrant functional interactions between large-scale networks may be the most plausible explanation of psychopathology across multiple mental disorders, including substance-related and addictive disorders. In the current research, we have investigated the association between problematic cannabis use (PCU) and triple-network electroencephalographic (EEG) functional connectivity. Twelve participants with PCU and 24 non-PCU participants were included in the study. EEG recordings were performed during resting state (RS). The exact Low-Resolution Electromagnetic Tomography software (eLORETA) was used for all EEG analyses. Compared to non-PCU, PCU participants showed an increased delta connectivity between the salience network (SN) and central executive network (CEN), specifically, between the dorsal anterior cingulate cortex and right posterior parietal cortex. The strength of delta connectivity between the SN and CEN was positively and significantly correlated with higher problematic patterns of cannabis use after controlling for age, sex, educational level, tobacco use, problematic alcohol use, and general psychopathology (rp = 0.40, p = 0.030). Taken together, our results show that individuals with PCU could be characterized by a specific dysfunctional interaction between the SN and CEN during RS, which might reflect the neurophysiological underpinnings of attentional and emotional processes of cannabis-related thoughts, memories, and craving.


2007 ◽  
Vol 19 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Ethan Kross ◽  
Tobias Egner ◽  
Kevin Ochsner ◽  
Joy Hirsch ◽  
Geraldine Downey

Rejection sensitivity (RS) is the tendency to anxiously expect, readily perceive, and intensely react to rejection. This study used functional magnetic resonance imaging to explore whether individual differences in RS are mediated by differential recruitment of brain regions involved in emotional appraisal and/or cognitive control. High and low RS participants were scanned while viewing either representational paintings depicting themes of rejection and acceptance or nonrepresentational control paintings matched for positive or negative valence, arousal and interest level. Across all participants, rejection versus acceptance images activated regions of the brain involved in processing affective stimuli (posterior cingulate, insula), and cognitive control (dorsal anterior cingulate cortex; medial frontal cortex). Low and high RS individuals' responses to rejection versus acceptance images were not, however, identical. Low RS individuals displayed significantly more activity in left inferior and right dorsal frontal regions, and activity in these areas correlated negatively with participants' self-report distress ratings. In addition, control analyses revealed no effect of viewing negative versus positive images in any of the areas described above, suggesting that the aforementioned activations were involved in rejection-relevant processing rather than processing negatively valenced stimuli per se. Taken together, these findings suggest that responses in regions traditionally implicated in emotional processing and cognitive control are sensitive to rejection stimuli irrespective of RS, but that low RS individuals may activate prefrontal structures to regulate distress associated with viewing such images.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261334
Author(s):  
Chizuko Hamada ◽  
Toshikazu Kawagoe ◽  
Masahiro Takamura ◽  
Atsushi Nagai ◽  
Shuhei Yamaguchi ◽  
...  

Apathy is defined as reduction of goal-directed behaviors and a common nuisance syndrome of neurodegenerative and psychiatric disease. The underlying mechanism of apathy implicates changes of the front-striatal circuit, but its precise alteration is unclear for apathy in healthy aged people. The aim of our study is to investigate how the frontal-striatal circuit is changed in elderly with apathy using resting-state functional MRI. Eighteen subjects with apathy (7 female, 63.7 ± 3.0 years) and eighteen subjects without apathy (10 female, 64.8 ± 3.0 years) who underwent neuropsychological assessment and MRI measurement were recruited. We compared functional connectivity with/within the striatum between the apathy and non-apathy groups. The seed-to-voxel group analysis for functional connectivity between the striatum and other brain regions showed that the connectivity was decreased between the ventral rostral putamen and the right dorsal anterior cingulate cortex/supplementary motor area in the apathy group compared to the non-apathy group while the connectivity was increased between the dorsal caudate and the left sensorimotor area. Moreover, the ROI-to-ROI analysis within the striatum indicated reduction of functional connectivity between the ventral regions and dorsal regions of the striatum in the apathy group. Our findings suggest that the changes in functional connectivity balance among different frontal-striatum circuits contribute to apathy in elderly.


2018 ◽  
Vol 53 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Yongjun Chen ◽  
Ziyu Meng ◽  
Zongfeng Zhang ◽  
Yajing Zhu ◽  
Rui Gao ◽  
...  

Objective: The imbalance in neurotransmitter and neuronal metabolite concentration within cortico-striato-thalamo-cortical (CSTC) circuit contributes to obsessive–compulsive disorder’s (OCD) onset. Previous studies showed that glutamate mediated upregulation of resting-state activity in healthy people. However, there have been few studies investigating the correlational features between functional and neurochemical alterations in OCD. Methods: We utilize a combined resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) approach to investigate the altered functional connectivity (FC) in association with glutamatergic dysfunction in OCD pathophysiology. Three regions of interest are investigated, i.e., medial prefrontal cortex and bilateral thalamus, for seed-based whole-brain FC analysis as well as MRS data acquisition. There are 23 unmedicated adult OCD patients and 23 healthy controls recruited for brain FC analysis. Among them, 12 OCD and 8 controls are performed MRS data acquisition. Results: Besides abnormal FC within CSTC circuit, we also find altered FCs in large-scale networks outside CSTC circuit, including occipital area and limbic and motor systems. The decreased FC between right thalamus and right middle occipital gyrus (MOG) is correlated with glutamatergic signal within right thalamus in OCD patients. Moreover, the FC between right thalamus and right dorsal anterior cingulate cortex (dACC) is associated with glutamate level in right thalamus, specifically in patient’s group. Finally, the FC between right thalamus and right MOG is correlated with patient’s Yale–Brown Obsessive Compulsive Scale (YBOCS) compulsion and total scores, while the right thalamic glutamatergic signal is associated with YBOCS-compulsion score. Conclusion: Our findings showed that the coupled intrinsic functional–biochemical alterations existed both within CSTC circuit and from CSTC to occipital lobe in OCD pathophysiology.


2019 ◽  
Vol 33 (12) ◽  
pp. 1600-1609 ◽  
Author(s):  
Robin N Perry ◽  
Hera E Schlagintweit ◽  
Christine Darredeau ◽  
Carl Helmick ◽  
Aaron J Newman ◽  
...  

Background: Changes in resting state functional connectivity between the insula and dorsal anterior cingulate cortex as well as between the insula and nucleus accumbens have been linked to nicotine withdrawal and/or administration. However, because many of nicotine’s effects in humans appear to depend, at least in part, on the belief that nicotine has been administered, the relative contribution of nicotine’s pharmacological actions to such effects requires clarification. Aims: The purpose of this study was to examine the impacts of perceived and actual nicotine administration on neural responses. Methods: Twenty-six smokers were randomly assigned to receive either a nicotine inhaler (4 mg deliverable) or a nicotine-free inhaler across two sessions. Inhaler content instructions (told nicotine vs told nicotine-free) differed across sessions. Resting state functional connectivity between sub-regions of the insula and the dorsal anterior cingulate cortex and nucleus accumbens was measured using magnetic resonance imaging before and after inhaler administration. Results: Both actual and perceived nicotine administration independently altered resting state functional connectivity between the anterior insula and the dorsal anterior cingulate cortex, with actual administration being associated with decreased resting state functional connectivity, and perceived administration with increased resting state functional connectivity. Actual nicotine administration also contralaterally reduced resting state functional connectivity between the anterior insula and nucleus accumbens, while reductions in resting state functional connectivity between the mid-insula and right nucleus accumbens were observed when nicotine was administered unexpectedly. Changes in resting state functional connectivity associated with actual or perceived nicotine administration were unrelated to changes in subjective withdrawal and craving. Changes in withdrawal and craving were however independently associated with resting state functional connectivity between the nucleus accumbens and insula. Conclusions: Our findings highlight the importance of considering non-pharmacological factors when examining drug mechanisms of action.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Tristen K Inagaki ◽  
Sasha Brietzke ◽  
Meghan L Meyer

Abstract Humans give support, care, and assistance to others on a daily basis. However, the brain mechanisms that set such supportive behavior in motion are unknown. Based on previous findings demonstrating that activity in a portion of the brain’s default network—the dorsomedial prefrontal cortex (DMPFC)—during brief rest primes social thinking and behavior, momentary fluctuations in this brain region at rest may prime supportive responding. To test this hypothesis, 26 participants underwent functional magnetic resonance imaging (fMRI) while they alternated between deciding whether to give support to a close other in financial need, receive support for themselves, and make arbitrary decisions unrelated to support. Decisions were interleaved with brief periods of rest. Results showed that, within participants, spontaneous activity in the DMPFC during momentary periods of rest primed supportive-responding: greater activity in this region at the onset of a brief period of rest predicted, on a trial-by-trial basis, faster decisions to give support to the close other. Thus, activating the DMPFC as soon as our minds are free from external demands to attention may help individuals “default” to support-giving. Implications for understanding the prosocial functions of the resting brain are discussed.


1987 ◽  
Vol 15 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Alan Vaux ◽  
Joanna Wood

Three models involving three facets of social support, orientation to support utilization, and psychological distress were subjected to path analysis using data from 176 college students. Findings supported the following models: (a) Support network resources yield supportive behavior that in turn promotes positive appraisals of support, (b) orientation to support utilization effects resources, behavior, and appraisals, and (c) resources and behavior effect distress indirectly through support appraisals.


2012 ◽  
Vol 43 (9) ◽  
pp. 1825-1836 ◽  
Author(s):  
S. J. A. van der Werff ◽  
J. N. Pannekoek ◽  
I. M. Veer ◽  
M.-J. van Tol ◽  
A. Aleman ◽  
...  

BackgroundChildhood emotional maltreatment (CEM) has been associated with disturbances in emotional and behavioral functioning, and with changes in regional brain morphology. However, whether CEM has any effect on the intrinsic organization of the brain is not known. In this study, we investigated the effects of CEM on resting-state functional connectivity (RSFC) using seeds in the limbic network, the default-mode network (DMN) and the salience network, and the left dorsomedial prefrontal cortex (dmPFC).MethodUsing 3-T magnetic resonance imaging (MRI), resting-state functional MRI (RS-fMRI) scans were obtained. We defined seeds in the bilateral amygdala, the dorsal anterior cingulate cortex (dACC), the posterior cingulate cortex (PCC) and the left dmPFC, and used these to examine whether individuals reporting CEM (n=44) differed from individuals reporting no CEM (n=44) in RSFC with other brain regions. The two groups were matched for age, gender, handedness and the presence of psychopathology.ResultsCEM was associated with decreased RSFC between the right amygdala and the bilateral precuneus and a cluster extending from the left insula to the hippocampus and putamen. In addition, CEM was associated with decreased RSFC between the dACC and the precuneus and also frontal regions of the brain.ConclusionsWe found that CEM has a profound effect on RSFC in the limbic network and the salience network. Regions that show aberrant connectivity are related to episodic memory encoding, retrieval and self-processing operations.


Cephalalgia ◽  
2017 ◽  
Vol 38 (11) ◽  
pp. 1731-1741 ◽  
Author(s):  
X Michelle Androulakis ◽  
Chris Rorden ◽  
B Lee Peterlin ◽  
Kaitlin Krebs

Objective To investigate the intranetwork resting state fMRI connectivity within the Salience Network of chronic migraine with and without medication overuse headache. Methods We compared 351 pairs of intranetwork connectivity in chronic migraine (n = 13) and chronic migraine with medication overuse headache (n = 16) compared to matched controls, and between each chronic migraine subgroup. Results Compared to controls, 17 pairs of intranetwork connections in chronic migraine and 27 pairs in chronic migraine with medication overuse headache were decreased. When comparing chronic migraine with medication overuse headache versus chronic migraine, connectivity between bilateral extended amygdala, and between paracingulate to right ventral tegmental area/substantia nigra were decreased in chronic migraine (chronic migraine < chronic migraine with medication overuse headache). Connectivity between left dorsolateral prefrontal cortex to bilateral ventral striatum/pallidum, to bilateral dorsal anterior cingulate cortex; left anterior prefrontal cortex to contralateral orbitofrontal insula; and left ventral striatum/pallidum to ipsilateral supplementary motor area (SMA)/preSMA were decreased in chronic migraine with medication overuse headache (chronic migraine with medication overuse headache < chronic migraine). Conclusion Both chronic migraine subgroups had shared intranetwork connectivity abnormality, however, each subgroup had unique pattern of disruption within the salience network. The results suggest that the aberrant assignment of salience to external and internal stimuli plays an important role in chronic migraine and chronic migraine with medication overuse headache interictally, mostly involving mesolimbic pathways (especially bilateral extended amygdala) in chronic migraine, and prefrontal-subcortical limbic pathways in chronic migraine with medication overuse headache.


Sign in / Sign up

Export Citation Format

Share Document