scholarly journals Genome-wide Association Study of Creativity Reveals Genetic Overlap With Psychiatric Disorders, Risk Tolerance, and Risky Behaviors

2020 ◽  
Vol 46 (5) ◽  
pp. 1317-1326 ◽  
Author(s):  
Huijuan Li ◽  
Chuyi Zhang ◽  
Xin Cai ◽  
Lu Wang ◽  
Fang Luo ◽  
...  

Abstract Creativity represents one of the most important and partially heritable human characteristics, yet little is known about its genetic basis. Epidemiological studies reveal associations between creativity and psychiatric disorders as well as multiple personality and behavioral traits. To test whether creativity and these disorders or traits share genetic basis, we performed genome-wide association studies (GWAS) followed by polygenic risk score (PRS) analyses. Two cohorts of Han Chinese subjects (4,834 individuals in total) aged 18–45 were recruited for creativity measurement using typical performance test. After exclusion of the outliers with significantly deviated creativity scores and low-quality genotyping results, 4,664 participants were proceeded for GWAS. We conducted PRS analyses using both the classical pruning and thresholding (P+T) method and the LDpred method. The extent of polygenic risk was estimated through linear regression adjusting for the top 3 genotyping principal components. R2 was used as a measurement of the explained variance. PRS analyses demonstrated significantly positive genetic overlap, respectively, between creativity with schizophrenia ((P+T) method: R2(max) ~ .196%, P = .00245; LDpred method: R2(max) ~ .226%, P = .00114), depression ((P+T) method: R2(max) ~ .178%, P = .00389; LDpred method: R2(max) ~ .093%, P = .03675), general risk tolerance ((P+T) method: R2(max) ~ .177%, P = .00399; LDpred method: R2(max) ~ .305%, P = .00016), and risky behaviors ((P+T) method: R2(max) ~ .187%, P = .00307; LDpred method: R2(max) ~ .155%, P = .00715). Our results suggest that human creativity is probably a polygenic trait affected by numerous variations with tiny effects. Genetic variations that predispose to psychiatric disorders and risky behaviors may underlie part of the genetic basis of creativity, confirming the epidemiological associations between creativity and these traits.

2019 ◽  
Author(s):  
Richard J Allen ◽  
Beatriz Guillen-Guio ◽  
Justin M Oldham ◽  
Shwu-Fan Ma ◽  
Amy Dressen ◽  
...  

AbstractRationaleIdiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. The mechanisms by which this arises are poorly understood and it is likely that multiple pathways are involved. The strongest genetic association with IPF is a variant in the promoter of MUC5B where each copy of the risk allele confers a five-fold risk of disease. However, genome-wide association studies have reported additional signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion.ObjectivesTo improve our understanding of mechanisms that increase IPF susceptibility by identifying previously unreported genetic associations.Methods and measurementsWe performed the largest genome-wide association study undertaken for IPF susceptibility with a discovery stage comprising up to 2,668 IPF cases and 8,591 controls with replication in an additional 1,467 IPF cases and 11,874 controls. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Main resultsWe identified and replicated three new genome-wide significant (P<5×10-8) signals of association with IPF susceptibility (near KIF15, MAD1L1 and DEPTOR) and confirm associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF risk variants contribute to IPF susceptibility.ConclusionsNovel association signals support the importance of mTOR signalling in lung fibrosis and suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Author(s):  
Alexander L Richards ◽  
Antonio F Pardiñas ◽  
Aura Frizzati ◽  
Katherine E Tansey ◽  
Amy J Lynham ◽  
...  

Abstract Background Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. Methods We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. Results PRS for both population IQ (P = 4.39 × 10–28) and EA (P = 1.27 × 10–26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. Conclusions Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors.


Author(s):  
Kaoru Suzuki ◽  
Yoichi Kakuta ◽  
Takeo Naito ◽  
Tetsuya Takagawa ◽  
Hiroyuki Hanai ◽  
...  

Abstract Background Some patients with inflammatory bowel disease (IBD) who were under mesalamine treatment develop adverse reactions called “mesalamine allergy,” which includes high fever and worsening diarrhea. Currently, there is no method to predict mesalamine allergy. Pharmacogenomic approaches may help identify these patients. Here we analyzed the genetic background of mesalamine intolerance in the first genome-wide association study of Japanese patients with IBD. Methods Two independent pharmacogenetic IBD cohorts were analyzed: the MENDEL (n = 1523; as a discovery set) and the Tohoku (n = 788; as a replication set) cohorts. Genome-wide association studies were performed in each population, followed by a meta-analysis. In addition, we constructed a polygenic risk score model and combined genetic and clinical factors to model mesalamine intolerance. Results In the combined cohort, mesalamine-induced fever and/or diarrhea was significantly more frequent in ulcerative colitis vs Crohn’s disease. The genome-wide association studies and meta-analysis identified one significant association between rs144384547 (upstream of RGS17) and mesalamine-induced fever and diarrhea (P = 7.21e-09; odds ratio = 11.2). The estimated heritability of mesalamine allergy was 25.4%, suggesting a significant correlation with the genetic background. Furthermore, a polygenic risk score model was built to predict mesalamine allergy (P = 2.95e-2). The combined genetic/clinical prediction model yielded a higher area under the curve than did the polygenic risk score or clinical model alone (area under the curve, 0.89; sensitivity, 71.4%; specificity, 90.8%). Conclusions Mesalamine allergy was more common in ulcerative colitis than in Crohn’s disease. We identified a novel genetic association with and developed a combined clinical/genetic model for this adverse event.


2018 ◽  
Author(s):  
Richard Karlsson Linnér ◽  
Pietro Biroli ◽  
Edward Kong ◽  
S Fleur W Meddens ◽  
Robbee Wedow ◽  
...  

AbstractHumans vary substantially in their willingness to take risks. In a combined sample of over one million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. We identified 611 approximately independent genetic loci associated with at least one of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial shared genetic influences across general risk tolerance and risky behaviors: 72 of the 124 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is moderately to strongly genetically correlated ( to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We find no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.


2021 ◽  
Author(s):  
Tina Kretschmer ◽  
Isabelle Ouellet-Morin ◽  
Charlotte Vrijen ◽  
Ilja Maria Nolte ◽  
Catharina A. Hartman

Twin studies suggest a substantial role for genes in explaining individual differences in aggressive behaviour across development. It is unclear, however, how directly measured genetic risk is associated with aggressive behaviour at different moments across adolescence and how genes might distinguish developmental trajectories of aggressive behaviour. Here, a polygenic risk score derived from the EAGLE-Consortium genome-wide association study of aggressive behaviour in children was tested as predictor of latent growth classes derived from those measures in an adolescent population (n = 2229, of which n = 1259 with genetic information) and a high-risk sample (n = 543, of which n = 339 with genetic information). In the population sample, the polygenic risk score explained variation in parent-reported aggressive behaviour at all ages and distinguished between stable low aggressive behaviour and moderate and high-decreasing trajectories based on parent-report. In contrast, the polygenic risk score was not associated with self- and teacher-reported aggressive behaviour, and no associations were found in the high-risk sample. This pattern of results suggests that methodological choices made in genome-wide association studies impact the predictive power of polygenic risk scores, not just with respect to power but likely also in terms of generalizability and specificity.


2013 ◽  
Vol 202 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Ann L. Collins ◽  
Patrick F. Sullivan

SummaryGenome-wide association studies (GWAS) have been the focus of considerable effort in psychiatry. These efforts have markedly increased knowledge of the genetic basis of psychiatric disorders, and yielded empirical data on genetic architecture critical to addressing long-standing debates in the field. There is a now a clear path to increased knowledge of the ‘parts lists’ for these disorders.


Author(s):  
Nasa Sinnott-Armstrong ◽  
Sahin Naqvi ◽  
Manuel Rivas ◽  
Jonathan K Pritchard

SummaryGenome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. However, for most traits it remains difficult to interpret what genes and biological processes are impacted by the top hits. Here, as a contrast, we describe UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are biologically simpler than most diseases, and for which we know a great deal in advance about the core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that most top hits are readily interpretable. We observe huge enrichment of significant signals near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of variation in each trait, including insights into differences in testosterone regulation between females and males. Meanwhile, in other respects the results are reminiscent of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic, with most of the variance coming not from core genes, but from thousands to tens of thousands of variants spread across most of the genome. Given that diseases are often impacted by many distinct biological processes, including these three, our results help to illustrate why so many variants can affect risk for any given disease.


2018 ◽  
Author(s):  
Roman Teo Oliynyk

AbstractBackgroundGenome-wide association studies and other computational biology techniques are gradually discovering the causal gene variants that contribute to late-onset human diseases. After more than a decade of genome-wide association study efforts, these can account for only a fraction of the heritability implied by familial studies, the so-called “missing heritability” problem.MethodsComputer simulations of polygenic late-onset diseases in an aging population have quantified the risk allele frequency decrease at older ages caused by individuals with higher polygenic risk scores becoming ill proportionately earlier. This effect is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes.ResultsThe incidence rate for late-onset diseases grows exponentially for decades after early onset ages, guaranteeing that the cohorts used for genome-wide association studies overrepresent older individuals with lower polygenic risk scores, whose disease cases are disproportionately due to environmental causes such as old age itself. This mechanism explains the decline in clinical predictive power with age and the lower discovery power of familial studies of heritability and genome-wide association studies. It also explains the relatively constant-with-age heritability found for late-onset diseases of lower prevalence, exemplified by cancers.ConclusionsFor late-onset polygenic diseases showing high cumulative incidence together with high initial heritability, rather than using relatively old age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.


2018 ◽  
Vol 201 ◽  
pp. 393-399 ◽  
Author(s):  
Soichiro Nakahara ◽  
Sarah Medland ◽  
Jessica A. Turner ◽  
Vince D. Calhoun ◽  
Kelvin O. Lim ◽  
...  

2021 ◽  
pp. ASN.2020111599
Author(s):  
Zhi Yu ◽  
Jin Jin ◽  
Adrienne Tin ◽  
Anna Köttgen ◽  
Bing Yu ◽  
...  

Background: Genome-wide association studies (GWAS) have revealed numerous loci for kidney function (estimated glomerular filtration rate, eGFR). The relationship of polygenic predictors of eGFR, risk of incident adverse kidney outcomes, and the plasma proteome is not known. Methods: We developed a genome-wide polygenic risk score (PRS) for eGFR by applying the LDpred algorithm to summary statistics generated from a multiethnic meta-analysis of CKDGen Consortium GWAS (N=765,348) and UK Biobank GWAS (90% of the cohort; N=451,508), followed by best parameter selection using the remaining 10% of UK Biobank (N=45,158). We then tested the association of the PRS in the Atherosclerosis Risk in Communities (ARIC) study (N=8,866) with incident chronic kidney disease, kidney failure, and acute kidney injury. We also examined associations between the PRS and 4,877 plasma proteins measured at at middle age and older adulthood and evaluated mediation of PRS associations by eGFR. Results: The developed PRS showed significant associations with all outcomes with hazard ratios (95% CI) per 1 SD lower PRS ranged from 1.06 (1.01, 1.11) to 1.33 (1.28, 1.37). The PRS was significantly associated with 132 proteins at both time points. The strongest associations were with cystatin-C, collagen alpha-1(XV) chain, and desmocollin-2. Most proteins were higher at lower kidney function, except for 5 proteins including testican-2. Most correlations of the genetic PRS with proteins were mediated by eGFR. Conclusions: A PRS for eGFR is now sufficiently strong to capture risk for a spectrum of incident kidney diseases and broadly influences the plasma proteome, primarily mediated by eGFR.


Sign in / Sign up

Export Citation Format

Share Document