scholarly journals O5.6. ADVANCED DIFFUSION IMAGING IN PSYCHOSIS RISK: A CROSS-SECTIONAL AND LONGITUDINAL STUDY OF WHITE MATTER DEVELOPMENT

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S13-S13
Author(s):  
Maria Di Biase ◽  
Suheyla Cetin Karayumak ◽  
Andrew Zalesky ◽  
Marek Kubicki ◽  
Yogesh Rathi ◽  
...  

Abstract Background Studies in individuals at clinical high risk (CHR) for psychosis provide a powerful means to predict outcomes and inform putative mechanisms underlying conversion to psychosis. In previous work, we applied advanced diffusion imaging methods to reveal that white matter pathology in a CHR population is characterized by cellular-specific changes in white matter, suggesting a preexisting neurodevelopmental anomaly. However, it remains unknown whether these deficits relate to clinical symptoms and/or conversion to frank psychosis. To address this gap, we examined cross-sectional and longitudinal white matter maturation in the largest imaging population of CHR individuals to date, obtained from the North American Prodrome Longitudinal Study (NAPLS-3). Methods Multi-shell diffusion magnetic resonance imaging (MRI) data were collected across multiple timepoints (1–6 at ~2 month intervals) in 286 subjects (age range=12–32 years). These were 230 unmedicated CHR subjects, including 11% (n=25) who transitioned to psychosis (CHR-converters), as well as 56 age and sex-matched healthy controls. Raw diffusion signals were harmonized to remove scanner/site-induced effects, yielding a unified imaging dataset. Fractional anisotropy of cellular tissue (FAt) and the volume fraction of extracellular free-water (FW) were assessed in 12 major tracts from the IIT Human Brain Atlas (v.5.0). Linear mixed effects (LME) models were fitted to infer developmental trajectories of FAt and FW across age for CHR-converters, CHR-nonconverters and control groups, while accounting for the repeated measurements on each individual. Results The rate at which FAt changed with age significantly differed between the three groups across commissural and association tracts (5 in total; p<0.05). In these tracts, FAt increased with age in controls (0.002% change per year) and in CHR-nonconverters, albeit at a slower rate (0.00074% per year). In contrast, FAt declined with age in CHR-converters at a rate that was significantly faster (-3.944% per year) than the rate of increase in the other two groups. By 25 years of age, FAt was significantly lower in both CHR groups compared to controls (p<0.05). With regard to FW, the rate of change significantly differed between CHR-converters and controls across the forceps major and the left inferior longitudinal and fronto-occipital fasciculi (IFOF; 3 tracts in total; p<0.05). This was due to increased FW with age in the CHR-converters (0.0024% change per year) relative to controls (-0.0002% per year). Consequently, FW was significantly higher in CHR-converters compared to controls by 20 years of age (p<.05). With regard to symptoms, there was a significant impact of IFOF FW on positive symptom severity across CHR subjects, regardless of conversion status (t=2.37, p<0.05). Discussion Our results revealed that clinical high-risk for psychosis is associated with cellular-specific alterations in white matter, regardless of conversion status. Only converters showed excess extracellular free-water, which involved tracts connecting occipital, posterior temporal, and orbito-frontal areas. We also demonstrate a direct impact of free-water on positive symptomatology, collectively, suggesting that excess free-water may signal acute psychosis and its onset. This marker may be useful for patient selection for clinical trials and assessment of individuals with prodromal psychosis.

2019 ◽  
Vol 176 (10) ◽  
pp. 820-828 ◽  
Author(s):  
Yingying Tang ◽  
Ofer Pasternak ◽  
Marek Kubicki ◽  
Yogesh Rathi ◽  
Tianhong Zhang ◽  
...  

NeuroImage ◽  
2021 ◽  
Vol 226 ◽  
pp. 117564
Author(s):  
Fan Zhang ◽  
Kang Ik Kevin Cho ◽  
Yingying Tang ◽  
Tianhong Zhang ◽  
Sinead Kelly ◽  
...  

2014 ◽  
Vol 29 (2) ◽  
pp. 144-154 ◽  
Author(s):  
C Bois ◽  
HC Whalley ◽  
AM McIntosh ◽  
SM Lawrie

There is a growing consensus that a symptomatology as complex and heterogeneous as schizophrenia is likely to be produced by widespread perturbations of brain structure, as opposed to isolated deficits in specific brain regions. Structural brain-imaging studies have shown that several features of the brain, such as grey matter, white matter integrity and the morphology of the cortex differ in individuals at high risk of the disorder compared to controls, but to a lesser extent than in patients, suggesting that structural abnormalities may form markers of vulnerability to the disorder. Research has had some success in delineating abnormalities specific to those individuals that transition to psychosis, compared to those at high risk that do not, suggesting that a general risk for the disorder can be distinguished from alterations specific to frank psychosis. In this paper, we review cross-sectional and longitudinal studies of individuals at familial or clinical high risk of the disorder. We conclude that the search for reliable markers of schizophrenia is likely to be enhanced by methods which amalgamate structural neuroimaging data into a coherent framework that takes into account the widespread distribution of brain alterations, and relates this to leading hypotheses of schizophrenia.


2017 ◽  
Vol 71 (8) ◽  
pp. 530-541 ◽  
Author(s):  
Junichi Saito ◽  
Masaaki Hori ◽  
Takahiro Nemoto ◽  
Naoyuki Katagiri ◽  
Keigo Shimoji ◽  
...  

2020 ◽  
Vol 46 (4) ◽  
pp. 846-856
Author(s):  
Daniel Bergé ◽  
Anna Mané ◽  
Tyler A Lesh ◽  
Miquel Bioque ◽  
Fe Barcones ◽  
...  

Abstract Recent diffusion imaging studies using free-water (FW) elimination have shown increased FW in gray matter (GM) and white matter (WM) in first-episode psychosis (FEP) and lower corrected fractional anisotropy (FAt) in WM in chronic schizophrenia. However, little is known about the longitudinal stability and clinical significance of these findings. To determine tissue-specific FW and FAt abnormalities in FEP, as part of a multicenter Spanish study, 132 FEP and 108 healthy controls (HC) were clinically characterized and underwent structural and diffusion-weighted MRI scanning. FEP subjects were classified as schizophrenia spectrum disorder (SSD) or non-SSD. Of these subjects, 45 FEP and 41 HC were longitudinally assessed and rescanned after 2 years. FA and FW tissue-specific measurements were cross-sectional and longitudinally compared between groups using voxel-wise analyses in the skeletonized WM and vertex-wise analyses in the GM surface. SSD and non-SSD subjects showed (a) higher baseline FW in temporal regions and in whole GM average (P.adj(SSD vs HC) = .003, P.adj(Non-SSD vs HC) = .040) and (b) lower baseline FAt in several WM tracts. SSD, but not non-SSD, showed (a) higher FW in several WM tracts and in whole WM (P.adj(SSD vs HC)= .049) and (b) a significant FW decrease over time in temporal cortical regions and in whole GM average (P.adj = .011). Increased extracellular FW in the brain is a reliable finding in FEP, and in SSD appears to decrease over the early course of the illness. FAt abnormalities are stable during the first years of psychosis.


Neurology ◽  
2019 ◽  
Vol 92 (19) ◽  
pp. e2221-e2231 ◽  
Author(s):  
Pauline Maillard ◽  
Evan Fletcher ◽  
Baljeet Singh ◽  
Oliver Martinez ◽  
David K. Johnson ◽  
...  

ObjectiveTo determine whether free water (FW) content, initially developed to correct metrics derived from diffusion tensor imaging and recently found to be strongly associated with vascular risk factors, may constitute a sensitive biomarker of white matter (WM) microstructural differences associated with cognitive performance but remains unknown.MethodsFive hundred thirty-six cognitively diverse individuals, aged 77 ± 8 years, received yearly comprehensive clinical evaluations and a baseline MRI examination of whom 224 underwent follow-up MRI. WM microstructural measures, including FW, fractional anisotropy, and mean diffusivity corrected for FW and WM hyperintensity burden were computed within WM voxels of each individual. Baseline and change in MRI metrics were then used as independent variables to explain baseline and change in episodic memory (EM), executive function (EF), and Clinical Dementia Rating (CDR) scores using linear, logistic, and Cox proportional-hazards regressions.ResultsHigher baseline FW and WM hyperintensity were associated with lower baseline EM and EF, higher baseline CDR, accelerated EF and EM decline, and higher probability to transition to a more severe CDR stage (p values <0.01). Annual change in FW was also found to be associated with concomitant change in cognitive and functional performance (p values <0.01).ConclusionsThis study finds cross-sectional and longitudinal associations between FW content and trajectory of cognitive and functional performance in a large sample of cognitively diverse individuals. It supports the need to investigate the pathophysiologic process that manifests increased FW, potentially leading to more severe WM territory injury and promoting cognitive and functional decline.


2016 ◽  
Vol 46 (14) ◽  
pp. 2907-2918 ◽  
Author(s):  
D. Kimhy ◽  
K. E. Gill ◽  
G. Brucato ◽  
J. Vakhrusheva ◽  
L. Arndt ◽  
...  

BackgroundSocial functioning (SF) difficulties are ubiquitous among individuals at clinical high risk for psychosis (CHR), but it is not yet clear why. One possibility is suggested by the observation that effective SF requires adaptive emotion awareness and regulation. Previous reports have documented deficits in emotion awareness and regulation in individuals with schizophrenia, and have shown that such deficits predicted SF. However, it is unknown whether these deficits are present prior to the onset of psychosis or whether they are linked to SF in CHR individuals.MethodWe conducted a cross-sectional comparison of emotion awareness and regulation in 54 individuals at CHR, 87 with schizophrenia and 50 healthy controls (HC). Then, within the CHR group, we examined links between emotion awareness, emotion regulation and SF as indexed by the Global Functioning Scale: Social (Cornblatt et al. 2007).ResultsGroup comparisons indicated significant differences between HC and the two clinical groups in their ability to identify and describe feelings, as well as the use of suppression and reappraisal emotion-regulation strategies. Specifically, the CHR and schizophrenia groups displayed comparable deficits in all domains of emotion awareness and emotion regulation. A hierarchical multiple regression analysis indicated that difficulties describing feelings accounted for 23.2% of the SF variance.ConclusionsThe results indicate that CHR individuals display substantial emotion awareness and emotion-regulation deficits, at severity comparable with those observed in individuals with schizophrenia. Such deficits, in particular difficulties describing feelings, predate the onset of psychosis and contribute significantly to poor SF in this population.


Sign in / Sign up

Export Citation Format

Share Document