The Distinctive Sleep Pattern of the Human Calcarine Cortex: A Stereo-EEG Study

SLEEP ◽  
2021 ◽  
Author(s):  
Maurizio Gorgoni ◽  
Simone Sarasso ◽  
Fabio Moroni ◽  
Ivana Sartori ◽  
Michele Ferrara ◽  
...  

Abstract Study Objectives The aim of the study was to describe the spontaneous electroencephalographic (EEG) features of sleep in the human calcarine cortex, comparing them with the well-established pattern of the parietal cortex. Methods We analysed pre-surgical intracerebral EEG activity in calcarine and parietal cortices during NREM and REM sleep in 7 patients with drug-resistant focal epilepsy. The time course of the EEG spectral power and NREM vs. REM differences were assessed. Sleep spindles were automatically detected. To assess homeostatic dynamics, we considered the 1 st vs. 2 nd half of the night ratio in the delta frequency range (0.5-4 Hz) and the rise rate of delta activity during the 1 st sleep cycle. Results While the parietal area showed the classically described NREM and REM sleep hallmarks, the calcarine cortex exhibited a distinctive pattern characterized by: a) the absence of sleep spindles; b) a large similarity between EEG power spectra of NREM and REM; c) reduced signs of homeostatic dynamics, with a decreased delta ratio between the 1 st and the 2 nd half of the night, a reduced rise rate of delta activity during the 1 st NREM sleep cycle, and lack of correlation between these measures. Conclusions Besides describing for the first time the peculiar sleep EEG pattern in the human calcarine cortex, our findings provide evidence that different cortical areas may exhibit specific sleep EEG pattern, supporting the view of sleep as a local process and promoting the idea that the functional role of sleep EEG features should be considered at a regional level.

2001 ◽  
Vol 32 (3) ◽  
pp. 112-118 ◽  
Author(s):  
Toshio Kobayashi ◽  
Shigeki Madokoro ◽  
Yuji Wada ◽  
Kiwamu Misaki ◽  
Hiroki Nakagawa

Sleep electroencephalograms (EEG) were analyzed by non-linear analysis. Polysomnography (PSG) of nine healthy male subjects was analyzed and the correlation dimension (D2) was calculated. The D2 characterizes the dynamics of the sleep EEG, estimates the degrees of freedom, and describes the complexity of the signal. The mean D2 decreased from the awake stage to stages 1,2,3 and 4 and increased during rapid eye movement (REM) sleep. The D2 during each REM sleep stage were high and those during each slow wave sleep stage were low, respectively, for each sleep cycle. The mean D2 of the sleep EEG in the second half of the night was significantly higher than those in the first half of the night. Significant changes were also observed during sleep stage 2, but were not seen during REM sleep and sleep stages 3 and 4. The D2 may be a useful method in the analysis of the entire sleep EEG.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andjela Markovic ◽  
Michael Kaess ◽  
Leila Tarokh

Abstract During adolescence, differences between males and females in physiology, behavior and risk for psychopathology are accentuated. The goal of the current study was to examine gender differences in sleep neurophysiology using high-density sleep EEG in early adolescence. We examined gender differences in sleep EEG power and coherence across frequency bands for both NREM and REM sleep in a sample of 61 adolescents (31 girls and 30 boys; mean age = 12.48; SD = 1.34). In addition, sleep spindles were individually detected and characterized. Compared to boys, girls had significantly greater spindle activity, as reflected in higher NREM sigma power, spindle amplitude, spindle frequency and spindle density over widespread regions. Furthermore, power in higher frequency bands (16.2–44 Hz) was larger in girls than boys in a state independent manner. Oscillatory activity across frequency bands and sleep states was generally more coherent in females as compared to males, suggesting greater connectivity in females. An exception to this finding was the alpha band during NREM and REM sleep, where coherence was higher (NREM) or not different (REM) in boys compared to girls. Sleep spindles are generated through thalamocortical circuits, and thus, the greater spindle activity across regions in females may represent a stronger thalamocortical circuit in adolescent females as compared to males. Moreover, greater global connectivity in females may reflect functional brain differences with implications for cognition and mental health. Given the pronounced gender differences, our study highlights the importance of taking gender into account when designing and interpreting studies of sleep neurophysiology.


Author(s):  
Vladimir C. Hachinski ◽  
Mortimer Mamelak ◽  
John W. Norris

ABSTRACT:We achieved a unique and timely recording of cerebral activity in a 70 year old woman immediately pre- and post-stroke, while studying the effect of acute cerebral infarction on sleep-electroencephalogram (EEG) patterns. Normal patterns, except for increased wakefulness, were recorded during two pre-infarct polysomnograms. Immediately following cerebral infarction increased delta activity was recorded from the infarcted hemisphere only. Initially, REM sleep could not be recorded from either side; however, on the third post infarct day REM sleep returned. Background EEG levels from both hemispheres became progressively slower, flatter and simpler. In addition, sleep spindles and the distinctive saw-tooth wave forms of sleep almost disappeared. At one year post-stroke sleep-EEG rhythm recordings from both hemispheres became more similar except for persisting delta activity from the left hemisphere. Unexpected deterioration of sleep-EEG pattern recordings from the undamaged hemisphere taken during the patient's clinical recovery remains unexplained. Serial sleep recording may facilitate the study of brain recovery, activity and reorganization following stroke.


2017 ◽  
Vol 117 (4) ◽  
pp. 921-924
Author(s):  
Sarah Debray ◽  
Philippe Demaerel ◽  
Robin Lemmens ◽  
Jelle Demeestere
Keyword(s):  

2021 ◽  
Vol 11 (10) ◽  
pp. 1261
Author(s):  
Maurizio Gorgoni ◽  
Serena Scarpelli ◽  
Ludovica Annarumma ◽  
Aurora D’Atri ◽  
Valentina Alfonsi ◽  
...  

Healthy aging is characterized by macrostructural sleep changes and alterations of regional electroencephalographic (EEG) sleep features. However, the spatiotemporal EEG pattern of the wake-sleep transition has never been described in the elderly. The present study aimed to assess the topographical and temporal features of the EEG during the sleep onset (SO) in a group of 36 older participants (59–81 years). The topography of the 1 Hz bins’ EEG power and the time course of the EEG frequency bands were assessed. Moreover, we compared the delta activity and delta/beta ratio between the older participants and a group of young adults. The results point to several peculiarities in the elderly: (a) the generalized post-SO power increase in the slowest frequencies did not include the 7 Hz bin; (b) the alpha power revealed a frequency-specific pattern of post-SO modifications; (c) the sigma activity exhibited only a slight post-SO increase, and its highest bins showed a frontotemporal power decrease. Older adults showed a generalized reduction of delta power and delta/beta ratio in both pre- and post-SO intervals compared to young adults. From a clinical standpoint, the regional EEG activity may represent a target for brain stimulation techniques to reduce SO latency and sleep fragmentation.


2006 ◽  
Vol 4 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Madoka TAKAHARA ◽  
Sakon KANAYAMA ◽  
Hiroshi NITTONO ◽  
Tadao HORI

1986 ◽  
Vol 251 (6) ◽  
pp. R1011-R1029 ◽  
Author(s):  
R. W. McCarley ◽  
S. G. Massaquoi

A limit cycle mathematical model of the rapid-eye-movement (REM) sleep oscillator system has been developed from a structural model of interaction of populations of REM-on and REM-off neurons. The marked differences in latency, amplitude, and duration of the first REM sleep period seen with circadian variation and depressive pathology are modeled by beginning the REM oscillation at different initial points relative to the final position in the limit cycle. Beginning from a point that is graphically interior to the limit cycle produces a long-latency, short-duration, and less intense first REM period. Beginning from a point graphically exterior to the limit cycle produces a short-latency, long-duration, and more intense first REM period. In the model the determinant of whether the oscillation begins exterior or interior to the limit cycle is the time course of decay of the REM-off population discharge activity at sleep onset. When this time course is made to depend on circadian phase, the model produces a very close match to the empirically observed large shifts between the first and second REM periods in duration (often a 50% change) and intensity and also closely mimics the empirically observed shifts in REM latency as human sleep begins at different circadian phases. Although this variation in limit cycle entry accounts for the major changes in REM sleep over the night, the model also postulates a continuous but small circadian variation (of the order of +/- 5% change in REM parameters) acting throughout the course of a night's sleep. Because the model is derived from actual physiological data, rather than being a purely ad hoc or phenomenological construct, it offers the possibility of direct tests of its postulates through neurobiological studies in animals, by circadian phase-related manipulations of the sleep cycle, and through perturbations of the system in humans by the use of drugs. Indeed, an explicit phase-response curve of the system to cholinergic agonists has been developed; this will permit experimental tests of the model in both animals and humans.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Guang ◽  
Halen Baker ◽  
Orilia Ben-Yishay Nizri ◽  
Shimon Firman ◽  
Uri Werner-Reiss ◽  
...  

AbstractDeep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson’s disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.


Author(s):  
Michelle A. Frazer ◽  
Yesenia Cabrera ◽  
Rockelle S. Guthrie ◽  
Gina R. Poe

Abstract Purpose of review This paper reviews all optogenetic studies that directly test various sleep states, traits, and circuit-level activity profiles for the consolidation of different learning tasks. Recent findings Inhibiting or exciting neurons involved either in the production of sleep states or in the encoding and consolidation of memories reveals sleep states and traits that are essential for memory. REM sleep, NREM sleep, and the N2 transition to REM (characterized by sleep spindles) are integral to memory consolidation. Neural activity during sharp-wave ripples, slow oscillations, theta waves, and spindles are the mediators of this process. Summary These studies lend strong support to the hypothesis that sleep is essential to the consolidation of memories from the hippocampus and the consolidation of motor learning which does not necessarily involve the hippocampus. Future research can further probe the types of memory dependent on sleep-related traits and on the neurotransmitters and neuromodulators required.


2013 ◽  
Vol 25 (10) ◽  
pp. 1597-1610 ◽  
Author(s):  
Erik J. Kaestner ◽  
John T. Wixted ◽  
Sara C. Mednick

Sleep affects declarative memory for emotional stimuli differently than it affects declarative memory for nonemotional stimuli. However, the interaction between specific sleep characteristics and emotional memory is not well understood. Recent studies on how sleep affects emotional memory have focused on rapid eye movement sleep (REM) but have not addressed non-REM sleep, particularly sleep spindles. This is despite the fact that sleep spindles are implicated in declarative memory as well as neural models of memory consolidation (e.g., hippocampal neural replay). Additionally, many studies examine a limited range of emotional stimuli and fail to disentangle differences in memory performance because of variance in valence and arousal. Here, we experimentally increase non-REM sleep features, sleep spindle density, and SWS, with pharmacological interventions using zolpidem (Ambien) and sodium oxybate (Xyrem) during daytime naps. We use a full spread of emotional stimuli to test all levels of valence and arousal. We find that increasing sleep spindle density increases memory discrimination (da) for highly arousing and negative stimuli without altering measures of bias (ca). These results indicate a broader role for sleep in the processing of emotional stimuli with differing effects based on arousal and valence, and they raise the possibility that sleep spindles causally facilitate emotional memory consolidation. These findings are discussed in terms of the known use of hypnotics in individuals with emotional mood disorders.


Sign in / Sign up

Export Citation Format

Share Document