scholarly journals Effects of grinding method and particle size of wheat grain on energy and nutrient digestibility in growing and finishing pigs

2020 ◽  
Vol 4 (2) ◽  
pp. 682-693 ◽  
Author(s):  
Jesus A Acosta ◽  
Amy L Petry ◽  
Stacie A Gould ◽  
Cassandra K Jones ◽  
Charles R Stark ◽  
...  

Abstract Feed grains are processed to improve their value in pig diets by exposing kernel contents to enzymatic and microbial action. The objective of this study was to quantify the effect of reducing mean particle size (PS) of wheat grain ground with two different grinding methods (GMs) on the apparent total tract digestibility (ATTD) of nutrients and energy in growing and finishing pigs. Forty-eight barrows were housed in individual pens for 11 d for two periods. Pigs were randomly assigned to a 3 × 2 × 2 factorial experimental design: three target mean PS of wheat grain (300, 500, and 700 µm), two GMs (roller mill and hammermill), and two body weight (BW) periods (growing period; initial BW of 54.9 ± 0.6 kg and finishing period; initial BW of 110.7 ± 1.4 kg). Diets contained one of six hard red wheat grain samples, vitamins, minerals, and titanium dioxide as an indigestible marker. Feed allowance provided 2.5 (for the two lightest pigs in each treatment) or 2.7 (for the remaining six pigs in each treatment) times the estimated daily maintenance energy requirement for each growth stage. Fecal samples were collected for the last 3 d of each period. Data were analyzed as a linear mixed model with pig as a random effect and PS, GM, and BW period and their interactions as fixed effects utilizing the MIXED procedure of SAS. Growing pigs had greater (P < 0.05) ATTD of dry matter (DM), gross energy (GE), N, acid hydrolyzed ether extract (AEE), and neutral detergent fiber (NDF) by lowering mean PS from 700 to 500 μm using either a roller mill or a hammermill. However, digestibility did not increase when PS was reduced from 500 to 300 μm, except for AEE (P < 0.05). Finishing pigs had greater ATTD of DM, GE, N, AEE, and NDF by lowering mean PS with a hammermill from 700 to 500 μm (P < 0.05), but it was greater for 500 μm than for 300 μm (P < 0.05). Using a roller mill reduced the ATTD of DM and NDF by lowering PS from 700 to 300 μm (P < 0.05). The ATTD of GE decreased by lowering PS from 700 to 500 μm with a roller mill (P < 0.05) for finishing pigs. The ATTD of N and AEE for finishing pigs were similar from 700 to 300 μm when ground by a roller mill. These data suggest that the PS that maximized digestibility for a hammermill is 500 μm for both growing and finishing pigs. However, for the roller mill, the PS resulting in the best digestibility were 500 and 700 μm for growing and finishing pigs, respectively.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 67-68
Author(s):  
Yuan-Tai Hung ◽  
Jinlong Zhu ◽  
Gerald C Shurson ◽  
Milena Saqui-Salces ◽  
Pedro E Urriola

Abstract Fiber is known for decreasing nutrient utilization in pigs. The addition of fiber alters diet viscosity, but our understanding of the effect of diet viscosity on nutrient digestibility is limited. This knowledge is necessary for improving dietary fiber utilization and when evaluating alternative feed ingredients. Thirty-six T-cannulated barrows (n = 6/treatment; initial BW = 26.5 ± 3.9 kg) were fed either corn-soybean meal (CSBM) basal diets or CSBM with 30% distillers dried grains with solubles as fiber source (CSBM+DDGS). The viscosity of diets were modified by using non-viscous cellulose (CEL), medium-viscosity carboxymethylcellulose (MCMC), or high-viscosity carboxymethylcellulose (HCMC) to assess viscosity effects on nutrient digestibility and intestinal physiology. After 29 d on diets, ileal digesta were collected to determine viscosity and apparent ileal digestibility (AID). Also, intestinal tissue and contents were harvested to determine morphometry, goblet cell quantitation, and digestive enzymatic activity. Data were analyzed using a linear mixed model with treatments as fixed effects and initial BW as a random effect. Results are shown in Table 1. No interactions were observed between viscosity and diets. Inclusion of MCMC and HCMC increased viscosity of supernatant and whole digesta compared with CEL. Increasing diet viscosity decreased AID of DM and CP in pigs fed MCMC and HCMC compared with pigs fed CEL, respectively. The AID of DM and CP were greater in CSBM than CSBM+DDGS. Inclusion of CMC increased crypt depth in the jejunum and goblet cell area in the ileum compared with pigs fed CEL regardless of basal diet fed. Digesta trypsin activity was not different among treatments, but inclusion of CMC increased amylase activity by 43% in jejunal digesta compared with CEL. The addition of DDGS reduced AID; however, viscosity affected intestinal morphology and function, suggesting that viscosity is the main characteristics of fiber affecting nutrient utilization of pigs.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Jesus A Acosta ◽  
Amy L Petry ◽  
Stacie A Gould ◽  
Cassandra K Jones ◽  
Charles R Stark ◽  
...  

Abstract The objective of this study was to determine the impact of reducing the mean particle size (PS) of corn distillers dried grains with solubles (DDGS) with a hammermill (HM) or with a roller mill (RM) on the apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), N, acid hydrolyzed ether extract (AEE), and fiber components in growing and finishing pigs. Twenty-four growing barrows were housed in individual pens and were randomly assigned to a 3 × 2 factorial design (n = 8): three grinding methods [either corn DDGS ground with an HM to a PS of 450 μm; corn DDGS ground with an RM to a PS of 450 μm; and corn DDGS with a PS of 670 μm (not further ground)] and two body weight (BW) periods (growing pigs with an average initial BW of 54.7 ± 0.9 kg, and finishing pigs with an average initial BW of 107.8 ± 1.5 kg BW). Fecal samples were collected for each BW period in the last 3 d of an 11-d feeding period. Titanium dioxide was used as an indigestible marker. Digestibility data were analyzed using the MIXED procedure of SAS. Results showed that finishing pigs tended to have better ATTD of DM than growing pigs (P = 0.09) and had increased ATTD of GE and N than growing pigs (P = 0.03 and P < 0.01, respectively). On the other hand, growing pigs had better ATTD of AEE than finishing pigs (P = 0.01). Pig BW period did not affect the ATTD of neutral detergent fiber (NDF), acid detergent fiber (ADF), and hemicellulose. Reducing the mean PS of corn DDGS with either HM or RM (from 670 to 450 µm) improved the ATTD of DM and GE (P < 0.01 and P < 0.01), tended to improve the ATTD of N (P = 0.08), and improved the ATTD of AEE (P < 0.01). No effect of reducing PS was observed for the ATTD of NDF, ADF, or hemicellulose. There were no differences between HM and RM in any of the ATTD variables tested. In conclusion, reducing PS of corn DDGS from 670 to 450 μm either with an HM or with an RM improved the digestibility of DM, GE, and AEE and modestly improved the digestibility of N in growing and finishing pigs. However, reducing the PS of corn DDGS did not affect the digestibility of fiber components.


2019 ◽  
Vol 4 (1) ◽  
pp. 10-21
Author(s):  
Jesus A Acosta ◽  
Amy L Petry ◽  
Stacie A Gould ◽  
Cassandra K Jones ◽  
Charles R Stark ◽  
...  

Abstract The experimental objective was to determine the role of mean particle size (PS), grinding method, and body weight (BW) category on nutrient, fiber, and energy digestibility of corn. A total of 48 barrows were housed in individual pens and randomly assigned to one of six dietary treatments for 11 d at two BW categories (55 kg and 110 kg). The six treatments consisted of corn ground at three different targeted mean PSs (300, 500, and 700 µm) using either a roller mill or a hammermill. Fecal samples were collected for the last 3 d of each feeding period. Titanium dioxide was used as an indigestible marker. Digestibility data were analyzed as a linear mixed model using the MIXED procedure of SAS. Finishing pigs had greater apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and N than growing pigs (P = 0.02, P = 0.01, and P <0.01, respectively). The ATTD of DM, GE, and N was similar in pigs fed hammermilled corn across all PS treatments. However, in roller-milled corn, they increased as PS was reduced (P < 0.05). The ATTD of acid-hydrolyzed ether extract (AEE) in growing pigs was similar between corn ground at 700 and 500 µm, but it was increased by further reducing PS to 300 µm (P < 0.05). In finishing pigs, the ATTD of AEE increased as mean PS decreased from 700 to 300 µm (P < 0.05). The ATTD of AEE was similar in hammermilled corn at all three PS treatments. On the other hand, the ATTD of AEE was similar in corn ground in a roller mill to 700 and 500 µm, but it increased when PS was reduced to 300 µm (P < 0.05). In conclusion, reducing PS of corn with a roller mill increased digestibility of energy and nutrients, but there was less effect using a hammermill. It is possible that differences in SD, distribution, chemical composition, and the shape of the particles resulting from the two grinding processes help to explain the different response.


Author(s):  
Amy L Petry ◽  
Nichole F Huntley ◽  
Michael R Bedford ◽  
John F Patience

Abstract In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. Three replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF+100 mg xylanase/kg [HF+XY, (Econase XT 25P; AB Vista, Marlborough, UK)] providing 16,000 birch xylan units/kg; and HF+50 mg arabinoxylan-oligosaccharide (AXOS) product/kg [HF+AX, (XOS 35A; Shandong Longlive Biotechnology, Shandong, China)] providing AXOS with 3-7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P<0.01). Relative to HF, HF+XY improved the AID of GE, CP, and NDF (P<0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P<0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P=0.031). Relative to HF, HF+XY improved cecal disappearance of DM (162 vs. 98g; P=0.008) and NDF (44 vs. 13g; P<0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P<0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF+XY decreased ileal viscosity compared with HF (P<0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Yuxia Chen ◽  
Dan Shen ◽  
Lilan Zhang ◽  
Ruqing Zhong ◽  
Zhengqun Liu ◽  
...  

This study was carried out to evaluate the effect of the addition of the non-starch polysaccharide enzymes cocktail (NSPEC) on growth performance, nutrient digestibility and gas emissions in a corn-miscellaneous meal-based diet for finishing pigs. The NSPEC is a combination of cellulase, xylanase, β-glucanase, β-mannanase, α-galactosidase and pectinase optimized by assessing the in vitro dry matter digestibility (IVDMD) of corn-miscellaneous meal diet using an in vitro method of simulating digestion in the stomach and intestine of growing pigs. Growth performance and apparent total tract digestibility (ATTD) of nutrients and energy were measured. The gas concentration of ammonia, carbon dioxide, nitrous oxide and methane in the environmental assessment chambers were determined. The gas detecting period was divided into three frequencies of manure removal of every 1d, 2d and 3d. The addition of NSPEC into the corn-miscellaneous meal diet decreased feed conversation rate (FCR) and increased the ATTD of dry matter, crude protein, gross energy, neutral detergent fiber and acid detergent fiber of pigs (p < 0.05). The digestible energy was also improved (p < 0.05) significantly by NSPEC supplementation in the diet. Furthermore, the supplementation of the NSPEC reduced (p < 0.05) carbon dioxide concentration in the chambers. The ammonia emissions were significantly increased according to average 1d, 2d and 3d manure removal procedures (p < 0.01). These results indicated that the inclusion of optimal NSPEC in a corn-miscellaneous meal diet improved growth performance, nutrient digestibility and reduced carbon dioxide emissions on finishing pigs. The accumulated manure could increase the release of ammonia in a pig house.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 876
Author(s):  
Qingtao Gao ◽  
Feng Zhao ◽  
Fangkun Dang ◽  
Hu Zhang ◽  
Ya Wang

This study was conducted to evaluate the effect of corn particle size on the particle size of intestinal digesta or feces and nutrient digestibility of corn–soybean meal diets. Twenty-four growing barrows (initial BW: 21.9 ± 1.62 kg) were randomly divided into 4 groups of 6 pigs. A T-cannula was surgically placed in the anterior duodenum (about 50 cm from pylorus) of pigs in Groups 1 and 2 or in the distal ileum of pigs in Groups 3 and 4. Corn used to formulate diets had mean particle size (MPS) of 365 µm (Corn 1) or 682 µm (Corn 2), resulting in diets with MPS of 390 µm (Diet 1) or 511 μm (Diet 2). Diet 1 or 2 were randomly assigned within pig Groups 1 or 2 and 3 or 4. The digestive enzyme activities of duodenal fluid, particle size of intestinal digesta and feces, as well as nutrient digestibility, were determined for each pig as the experiment unit. The MPS of duodenal digesta (181 vs. 287 µm, p < 0.01), ileal digesta (253 vs. 331 µm, p < 0.01), and feces (195 vs. 293 µm, p < 0.01) was significantly reduced for pigs fed Diet 1 vs. Diet 2, respectively. Compared with Diet 2, Diet 1 significantly reduced the proportion of particles above 0.5 mm, but significantly increased the proportion of particles between 0.072 and 0.5 mm (p < 0.01) in digesta and feces (p < 0.01). Diet 1 significantly increased solubles percentage (<0.072 mm) in duodenal digesta (p < 0.05) but did not affect solubles percentage in ileal digesta and feces. The MPS of diet did not affect the activities of amylase, trypsin, and chymotrypsin in the duodenal fluid and the apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, ether extract, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in pigs offered Diet 1 compared to Diet 2. The in vitro digestible energy (IVDE) (3706 vs. 3641 kcal/kg; p = 0.03) was greater for Corn 1 vs. Corn 2. However, no significant difference was observed in IVDE (3574 vs. 3561 kcal/kg; p = 0.47) for Diet 1 vs. Diet 2. In conclusion, the particle size of digesta and feces was dependent on the dietary particle size. However, the digestive enzyme activities of duodenal fluid and ATTD of energy and nutrients were not affected by reducing dietary MPS from 511 to 390 µm.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 52-53
Author(s):  
Amy Petry ◽  
Stacie Gould ◽  
Nichole Huntley ◽  
Mike R Bedford ◽  
John Patience

Abstract The objective of this experiment was to investigate xylanase efficacy and impact of adaptation time on nutrient utilization in the small intestine of growing pigs fed insoluble fiber. Twenty gilts (30.6 ± 0.2 kg BW; n=5 per treatment) were surgically fitted with t-cannulae in the medial jejunum (292 ± 12 cm distal to the pyloric sphincter) and in the terminal ileum, housed individually, and randomly assigned to one of four dietary treatments: a low-fiber control (LF; 7.3% NDF), a 30% corn bran high-fiber control (HF; 27.2% NDF), HF + 100 mg xylanase/kg (HF+XY; Econase XT 25P; AB Vista, Marlborough, UK), and HF + 50 mg arabinoxylan-oligosaccharide/kg (HF+AX; 3-7 degrees of polymerization). Gilts were limit fed for three 17 d periods (P1, P2, or P3). Each period included 5 d of adaptation, 2 d of fecal collections, 3 d of ileal collections, and 3 d of jejunal collections. Data were analyzed as repeated records using a linear mixed model (PROC Mixed, SAS 9.4) with surgery date as a random effect, and treatment, period, and their interaction as fixed effects. There tended to be a treatment by period interaction for the apparent jejunal digestibility (AJD) of DM driven by HF+XY improving digestibility over time when compared to HF. Xylanase improved AJD of DM by 21.9% (12.04% vs. 15.4%) in P2, and 40.5% (12.18% vs. 20.49%) in P3 (Treatment Period, P = 0.054). Xylanase supplementation improved AJD of NDF, compared to HF, in P2 by 36.3% (13.7% vs. 21.5%), and in P3 by 28.6% (17.7 vs 24.8%; Treatment Period, P = 0.031). Supplementing xylanase improved the apparent ileal digestibity (AID) of DM over HF in P1 by 4.4%, in P2 by 3.7% (73.91% vs. 76.2 %), and in P3 by 7.4% (75.04% vs. 80.84%; Treatment Period P=0.043). In conclusion xylanase efficacy improved with increased adaptation time.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 22-22
Author(s):  
Charles A Zumbaugh ◽  
Susannah A Gonia ◽  
Kathryn M Payne ◽  
Thomas B Wilson

Abstract The objectives of this experiment were to determine changes in the nutritive value and ergot alkaloid concentrations of endophyte-infected tall fescue hay and haylage during a 180-d storage period. Forage from a single field of Kentucky-31 tall fescue was cut for hay in late June and allowed to dry in the field. The dry matter (DM) of the windrow of cut forage was measured every 2 h after clipping. Forage was sampled from the windrow in 6 location blocks once forage DM reached target levels for haylage and hay treatments. Haylage and hay samples were taken when the DM of the windrow reached 50% and 80%, respectively. Seven subsamples of each treatment within block were chopped to 1.91 cm in length with a lettuce chopper and vacuum sealed in oxygen-excluding bags. Sample bags were stored indoors and opened at 30 d intervals over the 180-d storage period. Samples were analyzed for pH, nutritive value, and individual ergot alkaloid concentrations using high-performance liquid chromatography. Within each storage day, treatment within block was considered the experimental unit. Data were analyzed in SAS using the MIXED procedure with fixed effects of treatment, day, and the treatment by day interaction. Location block was considered a random effect. As expected, pH was decreased for haylage compared to hay at all time points (P &lt; 0.01) and DM was greater (P &lt; 0.01) for hay compared to haylage. Neutral detergent fiber values were greater (P &lt; 0.01) for hay compared to haylage and declined during storage (P &lt; 0.01). Total ergot alkaloid concentrations did not differ by treatment (P = 0.61), but ergovaline concentrations declined (P &lt; 0.01) during storage. Collectively, these results indicate minimal differences in nutritive value and ergot alkaloid concentrations between hay and haylage during storage, and that ergovaline concentrations decline during storage.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1374
Author(s):  
Bingbing Huang ◽  
Huangwei Shi ◽  
Li Wang ◽  
Lu Wang ◽  
Zhiqian Lyu ◽  
...  

This study was conducted to determine the effects of low-protein diet prepared with different levels of defatted rice bran (DFRB) and weight stages on growth performance and nutrient digestibility of growing–finishing pigs. The animal experiment included three stages. A total of 240 growing pigs with an initial body weight of 28.06 ± 8.56 kg for stage 1 were allocated to five diets including one control group and four DFRB diets supplemented with 2.5%, 5%, 7.5% and 10% DFRB, respectively. The 192 crossbred pigs with initial body weights of 55.03 ± 7.31 kg and 74.55 ± 9.10 kg were selected for stage 2 and stage 3, respectively. Pigs were allocated to four diets including one control group and three DFRB diets supplemented with 10%, 15% and 20% DFRB, respectively. The results showed that with the increase in DFEB intake, the gain: feed was linearly increased (p < 0.05), and the average daily feed intake tended to linearly decrease (p = 0.06) in stage 1. Except for the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF) in stage 3, levels of DFRB had significant effects on the ATTD of gross energy (GE), dry matter (DM), ash, neutral detergent fiber (NDF) and ADF in three weight stages. In stage 1, with the increase in levels of DFRB, the ATTD of NDF and hemicellulose were firstly increased and then decreased (p < 0.01). In stage 2, with the increasing levels of DFRB, the ATTD of DM, ash and cellulose were firstly increased and then decreased (p < 0.01). In stage 3, the ATTD of GE, DM, ash, NDF and hemicellulose decreased linearly with the increase in levels of DFRB (p < 0.01). Collectively, DFRB could be used as a replacement for corns and soybean meal, and weight stage is important to consider when adjusting the additive proportion.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 70-71
Author(s):  
Julia P Holen ◽  
Robert D Goodband ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Joel M DeRouchey

Abstract Two experiments were conducted to determine the effects of increasing levels of soybean meal (SBM) replacing feed grade amino acids in corn or corn-dried distillers grains with solubles (DDGS)-based diets on growth performance of late finishing pigs. In both experiments, there were 22 to 27 pigs per pen and 14 pens per treatment. Average length of the experiments was 35 (Exp. 1) and 29 days (Exp. 2). Diets were balanced to contain 0.70% SID Lys and 2,667 or 2,610 kcal NE/kg for Exp. 1 and 2, respectively. Minimum amino acid ratios relative to Lys were: Ile, 55; Met&Cys, 60; Thr, 65; Trp, 19.5, and Val, 70. Dietary crude protein ranged from 10.1 to 15.2 for Exp. 1 and 13.6 to 19.4 for Exp. 2. The statistical model considered fixed effects of treatment, linear and quadratic contrasts, and random effect of block. In Exp.1, 1,793 pigs (L337×1050, PIC; initially 104.9 ± 1.4 kg) were fed corn-based diets and pens of pigs were assigned to 1 of 5 dietary treatments with increasing SBM from 5 to 20%. Overall, average daily gain (ADG) and gain-to-feed (G:F) increased (linear; P &lt; 0.05) as SBM increased with the greatest improvement observed as SBM increased from 5 to 8.75%, with little improvement thereafter. In Exp. 2, 1,827 pigs (L337×1050, PIC; initially 97.9 ± 1.1 kg) were used in a similar study as Exp. 1, but all diets contained 25% DDGS and SBM levels increased from 0 to 16%. Overall, G:F and final bodyweight of pigs marginally improved (linear and quadratic, respectively; P &lt; 0.10) as SBM increased, with the greatest performance observed when diets contained 8% SBM. These results suggest that increasing SBM up to 8% at the expense of feed grade amino acids in corn or corn-DDGS-based diets improved ADG or G:F in late-finishing pigs.


Sign in / Sign up

Export Citation Format

Share Document