Lead Impairs the Development of Innate Lymphoid Cells by Impeding the Differentiation of Their Progenitors

2020 ◽  
Vol 176 (2) ◽  
pp. 410-422 ◽  
Author(s):  
Tingting Zhu ◽  
Yifan Zhao ◽  
Peng Zhang ◽  
Yiming Shao ◽  
Jinyi He ◽  
...  

Abstract Lead (Pb) is a heavy metal toxic to the immune system, yet the influence of Pb on innate lymphoid cells (ILC) remains to be defined. In this study, we found that occupationally relevant level of Pb exposure impaired ILC development at the progenitor level by activating Janus Kinase1. C57BL/6 mice treated with 1250 ppm, but not 125 ppm Pb acetic via drinking water for 8 weeks had reduced number of mature ILC, which was not caused by increased apoptosis or suppressed proliferation. Conversely, Pb increased the number of innate lymphoid cell progenitors (ILCP) in the bone marrow. The discordant observation indicated that an obstruction of ILCP differentiation into mature ILC during Pb exposure existed. Pb directly acted on ILCP to suppress their proliferation, indicating that ILCP were less activated during Pb exposure. Reciprocal ILCP transplantation assay confirmed that Pb impeded the differentiation of ILCP into mature ILC, as ILCP gave rise to fewer mature ILC in Pb-treated recipients compared with control recipients. In vitro assays suggested that the obstruction of ILCP differentiation by Pb exposure was due to increased activation of Janus Kinase1. Thus, Pb impeded ILCP differentiation into mature ILC to result in an accumulation of ILCP in the bone marrow and the resultant decreased number of mature ILC in lymphoid and nonlymphoid tissues in mice. Moreover, by analyses of ILC and ILCP in peripheral blood mononuclear cells of human subjects occupationally exposed to Pb, we revealed that Pb might also impede the development of ILC in human.

Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 873-882 ◽  
Author(s):  
G Hale ◽  
S Bright ◽  
G Chumbley ◽  
T Hoang ◽  
D Metcalf ◽  
...  

Graft-versus-host disease is one of the major problems in clinical bone marrow transplantation. Many experiments in animals have shown that it could be greatly reduced if mature T lymphocytes were removed from the donor marrow. Here we describe a new rat monoclonal antibody, CAMPATH 1, which is suitable for depleting lymphocytes from human marrow grafts. CAMPATH 1 is an IgM that fixes human complement. It binds to both T and B lymphocytes and some monocytes but not to other hemopoietic cells. When peripheral blood mononuclear cells were treated with CAMPATH 1 and complement, more than 99% of lymphocytes were killed and viable T cells could no longer be detected. Under these conditions, in vitro multipotential erythroid and myeloid colony-forming cells were unaffected. As well as being used for in vitro treatment of bone marrow to remove T cells, CAMPATH 1 could potentially be applied to other experimental and clinical situations where depletion of lymphoid cells is required, including serotherapy to achieve immunosuppression for organ transplants or to treat lymphocytic leukemias.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 873-882 ◽  
Author(s):  
G Hale ◽  
S Bright ◽  
G Chumbley ◽  
T Hoang ◽  
D Metcalf ◽  
...  

Abstract Graft-versus-host disease is one of the major problems in clinical bone marrow transplantation. Many experiments in animals have shown that it could be greatly reduced if mature T lymphocytes were removed from the donor marrow. Here we describe a new rat monoclonal antibody, CAMPATH 1, which is suitable for depleting lymphocytes from human marrow grafts. CAMPATH 1 is an IgM that fixes human complement. It binds to both T and B lymphocytes and some monocytes but not to other hemopoietic cells. When peripheral blood mononuclear cells were treated with CAMPATH 1 and complement, more than 99% of lymphocytes were killed and viable T cells could no longer be detected. Under these conditions, in vitro multipotential erythroid and myeloid colony-forming cells were unaffected. As well as being used for in vitro treatment of bone marrow to remove T cells, CAMPATH 1 could potentially be applied to other experimental and clinical situations where depletion of lymphoid cells is required, including serotherapy to achieve immunosuppression for organ transplants or to treat lymphocytic leukemias.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 380-385 ◽  
Author(s):  
K Welte ◽  
N Ciobanu ◽  
MA Moore ◽  
S Gulati ◽  
RJ O'Reilly ◽  
...  

Using OKT3 monoclonal antibody as a mitogen, we have studied interleukin 2 (IL2) production and proliferation in peripheral blood mononuclear cells (PBMC) of 23 patients receiving bone marrow transplants. Twenty patients were recipients of allogeneic bone marrow for treatment of hematologic malignancies, aplastic anemias (AA), or severe combined immunodeficiencies (SCID). Three patients with Hodgkin's disease or neuroblastoma received autologous bone marrow. Endogenous IL2 production was not detectable (less than 0.2 U/mL) in PBMC of 18 patients and was very low in PBMC from five patients (0.5 to 1.5 U/mL), as compared to normal controls (median 3.5 U/mL) or pretransplant patients (median 1.5 U/mL). The low IL2 production was associated with defective OKT3-induced proliferation of PBMC in 19 of 23 patients studied. In the first 6 months after BMT, 14 of 15 patients (93%) showed defective proliferation of PBMC as compared to five of eight patients (63%) tested between 7 and 18 months after BMT (P less than .1). In all but three patients, addition of highly purified human lymphocyte IL2 (hpIL2) restored OKT3-induced proliferation of PBMC to within the normal range. This study demonstrates that PBMC in patients after BMT have a defect of IL2 production but are able to express IL2 receptors in response to OKT3 antibody and to proliferate normally upon addition of hpIL2. PBMC of all patients showed similar functional defects, whether or not they received additional therapy, including various conditioning regimens prior to BMT and immunosuppressive therapy after BMT. These observations suggest that T cell defects after BMT are most likely secondary to quantitative or qualitative defects of transplanted T lymphocytes or their precursors.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3031-3031 ◽  
Author(s):  
Jeffrey S. Weber ◽  
Rupal Ramakrishnan ◽  
Andressa Laino ◽  
Anders E. Berglund ◽  
David Woods

3031 Background: PD-1 blocking antibodies have significant efficacy in the treatment of melanoma; however, many patients fail to respond and resistance mechanisms remain unknown. We addressed the role of Tregs, an immunosuppressive T-cell population, in patient outcome after treatment with nivolumab. Methods: Peripheral blood mononuclear cells (PBMC) were obtained from patients on trials with nivolumab as adjuvant therapy for resected disease or as treatment for metastatic melanoma. To measure suppression, Tregs were flow-sorted from PBMC and evaluated in allogeneic mixed lymphocyte reactions. Tregs and conventional CD4 T-cells were evaluated for gene expression changes by RNA-sequencing. Treg percentages and phosphorylated STAT3 (pSTAT3) expression were evaluated by flow cytometry. The effects of PD-1 blockade with nivolumab were evaluated in vitro using T-cells from baseline patient PBMC samples. Results: Tregs from responding patients or adjuvant patients without evidence of disease (NED) had reduced suppressive function post-nivolumab (p < 0.05), but no changes were observed in relapsing/non-responding patients; their Tregs were more suppressive than NED/responding Tregs (p < 0.001). NED Tregs had unique gene expression changes and associated pathways post-nivolumab compared to relapsing patient Tregs and conventional CD4 T-cells, including up-regulation of proliferation pathways (q < 8e-19) and downregulation of oxidative phosphorylation (q < 7e-5). NED Tregs had upregulation of pSTAT3 expression post-nivolumab (p < 0.05), which was not observed in relapsing patients. Evaluation of Tregs from patients with active disease also showed upregulation of pSTAT3 in responders (p < 0.05) but not non-responders. The relative increase in Treg pSTAT3 was associated with increased overall survival (R2= 0.49, p < 0.05). In vitro assays using PD-1 blocking antibodies recapitulated the increase in pSTAT3 (p < 0.05) and Treg percentages (p < 0.001), which were diminished with the addition of a STAT3 inhibitor (p < 0.01). Conclusions: These results demonstrate previously unknown roles of decreased Treg suppressive function and induction of STAT3 as biomarkers of patient’s outcome to nivolumab therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rayelle Itoua Maïga ◽  
Jennifer Lemieux ◽  
Annie Roy ◽  
Carl Simard ◽  
Sonia Néron

The in vitro CD40-CD154 interaction promotes human B lymphocytes differentiation into plasma cells. Currently, CD138 is the hallmark marker enabling the detection of human plasma cells, both in vitro and in vivo; its presence can be monitored by flow cytometry using a specific antibody. We have developed a culture system allowing for the differentiation of memory B lymphocytes. In order to detect the newly formed plasma cells, we have compared their staining using five anti-CD138 monoclonal antibodies (mAbs). As a reference, we also tested human cell lines, peripheral blood mononuclear cells, and bone marrow samples. The five anti-CD138 mAbs stained RPMI-8226 cells (>98%) with variable stain index (SI). The highest SI was obtained with B-A38 mAb while the lowest SI was obtained with DL-101 and 1D4 mAbs. However, the anti-CD138 mAbs were not showing equivalent CD138+cells frequencies within the generated plasma cells. B-A38, B-B4, and MI-15 were similar (15–25%) while DL-101 mAb stained a higher proportion of CD138-positive cells (38–42%). DL-101 and B-A38 mAbs stained similar populations in bone marrow samples but differed in their capacity to bind toCD138highandCD138locell lines. In conclusion, such cellular fluctuations suggest heterogeneity in human plasma cell populations and/or in CD138 molecules.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3367-3371 ◽  
Author(s):  
Andrew C. Dudley ◽  
Taturo Udagawa ◽  
Juan M. Melero-Martin ◽  
Shou-Ching Shih ◽  
Adam Curatolo ◽  
...  

Abstract The hypothesis that bone marrow–derived, circulating endothelial cells incorporate into tumor blood vessels is unresolved. We have measured the numbers of bone marrow–derived versus resident endothelial cells in spontaneous prostate cancers during different stages of tumor progression and in age-matched normal prostates. Bone marrow–derived endothelial cells were rare in dysplasia and in well differentiated cancers representing between 0 and 0.04% of the total tumor mass. Instead, approximately 99% of all tumor-associated bone marrow–derived cells were CD45+ hematopoietic cells, including GR-1+, F4-80+, and CD11b+ myeloid cells. Similar to peripheral blood mononuclear cells, these tumor-associated myeloid cells expressed matrix metalloproteinases (MMPs), consistent with their proposed catalytic role during tumor angiogenesis. Furthermore, freshly isolated CD11b+ cells stimulated tumor endothelial cell cord formation by 10-fold in an in vitro angiogenesis assay. The bone marrow is, therefore, a reservoir for cells that augment tumor angiogenesis, but the tumor endothelium is derived primarily from the local environment.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 807-812
Author(s):  
MH Gilleece ◽  
TM Dexter

The humanized antibody CAMPATH-1H has been shown in pilot studies to be beneficial in the treatment of lymphoid malignancy and other lymphoproliferative diseases. The antigen recognized by this antibody is not confined to lymphoid cells, and work with rat antibodies of similar specificity has not eliminated the possibility of damage to human hematopoietic progenitors, particularly those capable of repopulating bone marrow and sustaining hematopoiesis. This study aimed to discover if hematopoietic progenitor cells were affected by treatment with CAMPATH-1H, with or without human complement. Bone marrow mononuclear cells from healthy volunteers were treated with saturating concentrations of CAMPATH-1H, human complement, or CAMPATH- 1H plus human complement. The CD34-positive fraction of the mononuclear cells was treated similarly. Residual progenitor activity was measured in the colony-forming unit-granulocyte, erythroid, monocyte, megakaryocyte assay and compared with untreated controls. There was no significant difference (at the 5% level) between treated and control cells. Mononuclear cells were divided into CAMPATH-1H-positive and CAMPATH-1H-negative fractions by fluorescein isothiocyanate-CAMPATH-1H labeling and fluorescence-activated cell sorter separation. Hematopoietic progenitors were predominantly found in the CAMPATH-1H- negative fraction. Furthermore, mononuclear cells treated with CAMPATH- 1H and complement were equivalent to controls in experiments that investigated the capacity of these cells to form hematopoietic foci in long-term cultures.


PEDIATRICS ◽  
1986 ◽  
Vol 77 (3) ◽  
pp. 330-335
Author(s):  
Kevin Shannon ◽  
Gabriel Nunez ◽  
Lois W. Dow ◽  
Arthur G. Weinberg ◽  
Yuichi Sato ◽  
...  

Cells from three children with juvenile chronic myelogenous leukemia were studied using culture in semisolid media, cytogenetic analysis, and surface staining with the monocyte-specific monoclonal antibodies 61D3 and 63D3. The percentage of bone marrow mononuclear cells that were 61D3- and 63D3-positive was markedly increased in all three patients. Bone marrow and peripheral blood mononuclear cells exhibited exceptionally bright immunofluorescence with these antibodies. The presence of monocyte-specific antigens on the surface of juvenile chronic myelogenous leukemia cells suggests that they are derived from a precursor with monocytic characteristics. A specific chromosomal abnormality (47, XY+21) was present in fresh bone marrow cells from one patient; in contrast, 50 metaphases from phytohemagglutinin-stimulated peripheral blood contained a normal karyotype. The chromosomal abnormality was also identified in myeloid colonies grown in vitro from this patient. Granulocytic elements were demonstrated in tissue sections and in cultured myeloid colonies from this child. Our data suggest that malignant transformation in juvenile chronic myelogenous leukemia involves a myeloid progenitor population capable of differentiation in vitro to cells with monocytic or granulocytic characteristics.


2000 ◽  
Vol 7 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Keith A. Reimann ◽  
Miriam Chernoff ◽  
Cynthia L. Wilkening ◽  
Christine E. Nickerson ◽  
Alan L. Landay

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection results in impaired immune function that can be measured by changes in immunophenotypically defined lymphocyte subsets and other in vitro functional assays. These in vitro assays may also serve as early indicators of efficacy when new therapeutic strategies for HIV-1 infection are being evaluated. However, the use of in vitro assays of immune function in multicenter clinical trials has been hindered by their need to be performed on fresh specimens. We assessed the feasibility of using cryopreserved peripheral blood mononuclear cells (PBMC) for lymphocyte immunophenotyping and for lymphocyte proliferation at nine laboratories. In HIV-1-infected patients with moderate CD4+ lymphocyte loss, the procedures of density gradient isolation, cryopreservation, and thawing of PBMC resulted in significant loss of CD19+ B cells but no measurable loss of total T cells or CD4+ or CD8+ T cells. No significant changes were seen in CD28− CD95+lymphocytes after cell isolation and cryopreservation. However, small decreases in HLA-DR+ CD38+ lymphocytes and of CD45RA+ CD62L+ were observed within both the CD4+ and CD8+ subsets. Fewer than 10% of those specimens that showed positive PBMC proliferative responses to mitogens or microbial antigens lost their responsiveness after cryopreservation. These results support the feasibility of cryopreserving PBMC for immunophenotyping and functional testing in multicenter AIDS clinical trials. However, small changes in selected lymphocyte subsets that may occur after PBMC isolation and cryopreservation will need to be assessed and considered in the design of each clinical trial.


Sign in / Sign up

Export Citation Format

Share Document