scholarly journals Toxicant-Induced Leakage of Germ Cell–Specific Proteins from Seminiferous Tubules in the Rat: Relationship to Blood-Testis Barrier Integrity and Prospects for Biomonitoring

2010 ◽  
Vol 117 (2) ◽  
pp. 439-448 ◽  
Author(s):  
Naomi D. Elkin ◽  
Jacqui A. Piner ◽  
Richard M. Sharpe
Author(s):  
Olugbemi T. Olaniyan ◽  
Ayobami Dare ◽  
Gloria E. Okotie ◽  
Charles O. Adetunji ◽  
Babatunde O Ibitoye ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS- CoV-2) that causes COVID-19 infections penetrates body cells by binding to angiotensin-converting enzyme-2 (ACE2) receptors. Evidence shows that SARS-CoV-2 can also affect the urogenital tract. Hence, it should be given serious attention when treating COVID-19-infected male patients of reproductive age group. Other viruses like HIV, mumps, papilloma and Epstein–Barr can induce viral orchitis, germ cell apoptosis, inflammation and germ cell destruction with attending infertility and tumors. The blood-testis barrier (BTB) and blood-epididymis barrier (BEB) are essential physical barricades in the male reproductive tract located between the blood vessel and seminiferous tubules in the testes. Despite the significant role of these barriers in male reproductive function, studies have shown that a wide range of viruses can still penetrate the barriers and induce testicular dysfunctions. Therefore, this mini-review highlights the role of ACE2 receptors in promoting SARS-CoV-2-induced blood-testis/epididymal barrier infiltration and testicular dysfunction.


2019 ◽  
Vol 20 (22) ◽  
pp. 5717 ◽  
Author(s):  
Giudice ◽  
Vermeulen ◽  
Wyns

Klinefelter Syndrome (KS) is the most common genetic cause of infertility in men. Degeneration of the testicular tissue starts in utero and accelerates at puberty with hyalinisation of seminiferous tubules, spermatogonia apoptosis and germ cell maturation arrest. Therefore, fertility preservation in young KS boys has been proposed, although this measure is still debated due to insufficient knowledge of the pathophysiology of the disease. To better understand the underlying mechanisms of testicular failure and germ cell loss, we analysed functional and morphological alterations in the somatic compartment of KS testis, i.e., Sertoli cells, including the blood–testis barrier (BTB) and Leydig cells (LC). We compared three populations: 35 KS 47,XXY non-mosaic patients, 28 Sertoli-cell-only (SCO) syndrome patients and 9 patients with normal spermatogenesis. In KS patients the expression of BTB proteins connexin-43 and claudin-11 assessed with a semi-quantitative scoring system appeared significantly reduced with a disorganised pattern. A significant reduction in seminiferous tubules expressing androgen receptors (AR) was observed in KS compared to normal spermatogenesis controls. INSL3 expression, a marker of LC maturation, was also significantly reduced in KS compared to patients with normal spermatogenesis or SCO. Hence, the somatic compartment impairment in KS could be involved in degeneration of seminiferous tubules.


2008 ◽  
Vol 197 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Saleela M Ruwanpura ◽  
Robert I McLachlan ◽  
Peter G Stanton ◽  
Kate L Loveland ◽  
Sarah J Meachem

FSH is a key regulator of testis function, required for the establishment of full complements of Sertoli and germ cells during postnatal testis development and for the maintenance of spermatogenesis in the adult. FSH plays an important role in germ cell survival rather than proliferation, in the window between 14 and 18 days of testicular development, which coincides with the cessation of Sertoli cell proliferation and the onset of germ cell meiosis during the first wave of spermatogenesis. This study aimed to identify the pathway(s) of apoptosis regulated by changes in FSH levels in 14 - to 18-day-old rats, using a model of in vivo FSH suppression by passive immunoneutralization with a rat anti-FSH antibody. Apoptotic pathways were identified by immunohistochemistry using pathway-specific proteins as markers of the intrinsic (activated caspase 9) and extrinsic (activated caspase 8) pathways, followed by quantification of cell numbers using stereological techniques. In addition, RT-PCR was used to assess the expression of pathway-specific genes. We previously reported a 2.5-fold increase in spermatogonial apoptosis in these samples after 4 days of FSH suppression, and now show that this increase correlates with a 9.8-fold (P<0.001) increase in the frequency of caspase 9-positive spermatogonia in the absence of caspase 8 immunoreactivity. By contrast, spermatocytes exhibited both increased caspase 9 (7.5-fold; P<0.001) and caspase 8 (5.7 fold; P<0.001) immunoreactivities after 4 days of FSH suppression. No significant change in the transcription levels of candidate genes required for either pathway was detected. This study demonstrates that, in the seminiferous tubules, FSH suppression induces spermatogonial apoptosis predominantly via the intrinsic pathway, while spermatocyte apoptosis occurs via both the intrinsic and extrinsic pathways.


2020 ◽  
Vol 17 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Yuanyuan Li ◽  
Mohammad Ishraq Zafar ◽  
Xiaotong Wang ◽  
Xiaofang Ding ◽  
Honggang Li

Aim: To investigate the application of Scrotal Heat Stress (SHS) and Pulsed Unfocused Ultrasound (PuFUS) to explore Blood-Testis Barrier (BTB) permeability in adult mice. Background: The BTB provides a stable microenvironment and a unique immune barrier for spermatogenesis. Meanwhile, it blocks macromolecular substances access, including therapeutic agents and antibodies, thereby it decreases the therapeutic or immunocontraception effects. Objectives: To determine the viability of these physical approaches in delivering macromolecular substances into seminiferous tubules. Material & Methods: Mice were subjected to receive single SHS intervention at 39°C, 41°C, or 43°C for 30 min. Whereas, mice received the PuFUS intervention at 1.75w/cm2, 1.25w/cm2, and 2.5w/cm2 for 2 min, 5 min, and 10 min, respectively. The Biotin and macromolecular substances (IgG, IgM, and exosomes) were separately injected into the testicular interstitium at different times following SHS or PuFUS interventions, to observe their penetration through BTB into seminiferous tubules. Results: As detected by Biotin tracer, the BTB opening started from day-2 following the SHS and lasted for more than three days, whereas the BTB opening started from 1.5h following PuFUS and lasted up to 24h. Apparent penetration of IgG, IgM, and exosomes into seminiferous tubules was observed after five days of the SHS at 43°C, but none at 39°C, or any conditions tested with PuFUS. Conclusion: The current results indicate that SHS at 43°C comparatively has the potential for delivering macromolecular substances into seminiferous tubules, whereas the PuFUS could be a novel, quick, and mild approach to open the BTB. These strategies might be useful for targeted drug delivery into testicular seminiferous tubules. However, further studies are warranted to validate our findings.


Author(s):  
Mengrou Liu ◽  
Chunsen Zhu ◽  
Shun Bai ◽  
Xin Li ◽  
Kaiqiang Fu ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 13 ◽  
Author(s):  
J. R. Hill ◽  
I. Dobrinski

Male germ cell transplantation is a powerful approach to study the control of spermatogenesis with the ultimate goal to enhance or suppress male fertility. In livestock animals, applications can be expanded to provide an alternative method of transgenesis and an alternative means of artificial insemination (AI). The transplantation technique uses testis stem cells, harvested from the donor animal. These donor stem cells are injected into seminiferous tubules, migrate from the lumen to relocate to the basement membrane and, amazingly, they can retain the capability to produce donor sperm in their new host. Adaptation of the mouse technique for livestock is progressing, with gradual gains in efficiency. Germ cell transfer in goats has produced offspring, but not yet in cattle and pigs. In goats and pigs, the applications of germ cell transplantation are mainly in facilitating transgenic animal production. In cattle, successful male germ cell transfer could create an alternative to AI in areas where it is impractical. Large-scale culture of testis stem cells would enhance the use of elite bulls by providing a renewable source of stem cells for transfer. Although still in a developmental state, germ cell transplantation is an emerging technology with the potential to create new opportunities in livestock production.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Juan G. Reyes ◽  
Jorge G. Farias ◽  
Sebastián Henríquez-Olavarrieta ◽  
Eva Madrid ◽  
Mario Parraga ◽  
...  

Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.


2019 ◽  
Vol 109 ◽  
pp. 1126-1139 ◽  
Author(s):  
Marina L. Câmara ◽  
Talita B. Almeida ◽  
Fabiane de Santi ◽  
Beatriz M. Rodrigues ◽  
Paulo S. Cerri ◽  
...  

Reproduction ◽  
2019 ◽  
Author(s):  
Parag Parekh ◽  
Thomas Xavier Garcia ◽  
Marie-claude Hofmann

Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.


Sign in / Sign up

Export Citation Format

Share Document