scholarly journals Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles

2019 ◽  
Vol 172 (1) ◽  
pp. 23-37 ◽  
Author(s):  
Katherine E Pelch ◽  
Yin Li ◽  
Lalith Perera ◽  
Kristina A Thayer ◽  
Kenneth S Korach

Abstract Bisphenol A (BPA) is a high production volume chemical widely used in plastics, food packaging, and many other products. It is well known that endocrine-disrupting chemicals might be harmful to human health due to interference with normal hormone actions. Recent studies report widespread usage and exposure to many BPA-like chemicals (BPs) that are structurally or functionally similar to BPA. However, the biological actions and toxicity of those BPs are still relatively unknown. To address this data gap, we used in vitro cell models to evaluate the ability of 22 BPs to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)α and/or ERβ-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERβ-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERα-mediated activity. None of the BPs induced AR-mediated activity. In addition, we identify that the BPs can bind to ER or AR with varying degrees by a molecular modeling analysis. Taken together, these findings help us to understand the molecular mechanism of BPs and further consideration of their usage in consumer products.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kai Yao ◽  
Jing Zhang ◽  
Jie Yin ◽  
Yunfeng Zhao ◽  
Jianzhong Shen ◽  
...  

Bisphenol A (BPA) and its analogues (BPs) are suspected posing potential endocrine disrupting properties. They might migrate into foodstuffs through food packaging materials or contaminated water and soil. Dietary exposure is of paramount importance way for human health. European Food Safety Authority (EFSA) lowered the value of tolerable daily intake (TDI) from 50 μg/kg bw/day (d) to a temporary (t) TDI (t-TDI) of 4 μg/kg bw/d. In this study, the Chinese total dietary samples were analyzed for assessing the exposure risk of BPs by diets. BPA, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) were found in 12 kinds of food samples except for bisphenol B (BPB). A deterministic approach was used to calculate the dietary intakes of 4 kinds of compounds. For different age and gender groups, the exposure levels of BPA (178.440-403.672 ng/kg bw/d) was the highest, followed by BPS (21.372-52.112 ng/kg bw/d), BPF (20.641-50.507 ng/kg bw/d), and BPAF (0.434-1.210 ng/kg bw/d). Based on the t-TDI set by EFSA (4 μg/kg bw/d for BPA), the BPs through dietary intake pose low risks on the Chinese general population even summarization exposure levels of different BPs. However, human can be exposed to multiple endocrine disrupting chemicals rather than BPs alone; combined exposure risks should be further considered.


2021 ◽  
Vol 22 (11) ◽  
pp. 5534
Author(s):  
Elin Engdahl ◽  
Maarten van Schijndel ◽  
Dimitrios Voulgaris ◽  
Michela Di Criscio ◽  
Kerry Ramsbottom ◽  
...  

The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA’s known impact on neurodevelopment.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Marita Chakhtoura ◽  
Uma Sriram ◽  
Michelle Heayn ◽  
Joshua Wonsidler ◽  
Christopher Doyle ◽  
...  

Sex hormones affect immune responses and might promote autoimmunity. Endocrine disrupting chemicals such as bisphenol A (BPA) may mimic their immune effects. Conventional dendritic cells (cDCs) are pivotal initiators of immune responses upon activation by danger signals coming from pathogens or distressed tissues through triggering of the Toll-like receptors (TLRs). We generated in vitro murine cDCs in the absence of estrogens and measured the effects of exogenously added estrogen or BPA on their differentiation and activation by the TLR ligands LPS and CpG. Estrogen enhanced the differentiation of GM-CSF-dependent cDCs from bone marrow precursors in vitro, and the selective estrogen receptor modulators (SERMs) tamoxifen and fulvestrant blocked these effects. Moreover, estrogen augmented the upregulation of costimulatory molecules and proinflammatory cytokines (IL-12p70 and TNFα) upon stimulation by TLR9 ligand CpG, while the response to LPS was less estrogen-dependent. These effects are partially explained by an estrogen-dependent regulation of TLR9 expression. BPA did not promote cDC differentiation nor activation upon TLR stimulation. Our results suggest that estrogen promotes immune responses by increasing DC activation, with a preferential effect on TLR9 over TLR4 stimulation, and highlight the influence of estrogens in DC cultures, while BPA does not mimic estrogen in the DC functions that we tested.


2021 ◽  
Author(s):  
Tomas Prudencio ◽  
Luther Swift ◽  
Devon Guerrelli ◽  
Blake Cooper ◽  
Marissa Reilly ◽  
...  

ABSTRACTBackgroundBisphenol A (BPA) is a high-production volume chemical that is commonly used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened BPA exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA.ObjectiveThis study aimed to examine the direct nongenomic effects of BPA on cardiac electrophysiology and compare its safety profile to recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F).MethodsWhole-cell voltage-clamp recordings were performed on cell lines transfected with Nav1.5, hERG, or Cav1.2. Results of single channel experiments were validated by conducting electrophysiology studies on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole heart preparations.ResultsOf the chemicals tested, BPA was the most potent inhibitor of both fast (INa-P) and late (INa-L) sodium channel (IC50 = 55.3 and 23.6 μM, respectively), L-type calcium channel (IC50 = 30.8 μM) and hERG channel current (IC50 = 127 μM). The inhibitory effects of BPA and BPF on L-type calcium channels were supported by microelectrode array recordings, which revealed shortening of the extracellular field potential (akin to QT interval). Further, BPA and BPF exposure impaired atrioventricular conduction in intact, whole heart experiments. BPS did not alter any of the cardiac electrophysiology parameters tested.DiscussionResults of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, and that BPS may be a safer alternative. Intracellular signaling or genomic effects of bisphenol analogues were not investigated; therefore, additional mechanistic studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.


Chemosphere ◽  
2018 ◽  
Vol 209 ◽  
pp. 508-516 ◽  
Author(s):  
Asad Ullah ◽  
Madeeha Pirzada ◽  
Sarwat Jahan ◽  
Hizb Ullah ◽  
Ghazala Shaheen ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 532 ◽  
Author(s):  
Michael Thoene ◽  
Ewa Dzika ◽  
Slawomir Gonkowski ◽  
Joanna Wojtkiewicz

In recent years, bisphenol analogues such as bisphenol S (BPS) have come to replace bisphenol A in food packaging and food containers, since bisphenol A (BPA) has been shown to leach into food and water, causing numerous negative health effects. Unfortunately, little or no research was done to determine the safety of these BPA-free products before they were marketed to the public as a healthier alternative. The latest studies have shown that some of these bisphenol analogues may be even more harmful than the original BPA in some situations. This article used a literature survey to investigate the bisphenol analogue BPS and compare it to BPA and other analogues with regards to increased obesity, metabolic disorders, cancer, and reproductive defects; among others. It was found that BPS works via different pathways than does BPA while causing equivalent obesogenic effects, such as activating preadipocytes, and that BPS was correlated with metabolic disorders, such as gestational diabetes, that BPA was not correlated with. BPS was also shown to be more toxic to the reproductive system than BPA and was shown to hormonally promote certain breast cancers at the same rate as BPA. Therefore, a strong argument may be made to regulate BPS in exactly the same manner as BPA.


2013 ◽  
Vol 543 ◽  
pp. 200-203 ◽  
Author(s):  
Hasan Turkez ◽  
Kubra Celik ◽  
Bulent Cakmak

Nanoparticles (NPs) are used in various forms in consumer products including, cosmetics, food packaging, textiles and also in air and water cleaning, production of electro chromic windows, or smart windows and gas sensors. Many NPs have also been evaluated for potential use in biomedical applications as efficient delivery carriers for cancer diagnosis and therapy. Nowadays, NPs are being developed to create fascinating nanotechnology products. To develop NPs for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Again, to translate these nanomaterials to the clinic and industrial domains, their biosafety needs to be verified, particularly in terms of genotoxic and carcinogenic effects. To evaluate evidenced-based practices for NPs safety, we performed a systematic review of the published English-language literature. We performed a systematic keyword search of PubMed for original research articles pertaining to reports on assessment of risks due to carcinogenic and mutagenic effects by different NPs. We identified 362 original articles available for analysis. The included studies were published between 1993 and 2012. The in vivo or in vitro genotoxicity studies were performed on only 18 out of 148 kinds of NPs in industry today. Likewise, the carcinogenicity investigations were performed on only 14 out of 148 NPs. The 10 types of the NPs including some titanium, aluminium, carbon black and silver molecules were found to have both mutagenic and carcinogenic potential. The important finding was also that there is a lack of systematic assessment of the DNA damaging and carcinogenic potential of NPs in spite of their extensive use in nanotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document