Part II. The Use of Malt Produced with 70% Less Malting Loss for Beer Production: Impact on Processability and Final Quality

2011 ◽  
Vol 69 (4) ◽  
pp. 239-254
Author(s):  
Alexander Mauch ◽  
Sascha Wunderlich ◽  
Martin Zarnkow ◽  
Thomas Becker ◽  
Fritz Jacob ◽  
...  
Keyword(s):  
2019 ◽  
Vol 10 (1) ◽  
pp. 48-56
Author(s):  
Caroline C.A. Magalhães ◽  
Julia A. Romão ◽  
Geiza S. Araújo ◽  
Diego T. Santos ◽  
Giovani B.M. De Carvalho

Background: The use of nutritional supplementation of the brewer&#039;s wort can be an interesting option to increase cell viability and yeast fermentability. </P><P> Objective: This study aims to evaluate the effects of the variables wort concentration and nutritional supplementation with palm oil in the production of beer in high-density wort. </P><P> Methods: The process effects were evaluated through the central composite rotational design of type 22 associated with the Response Surface Methodology (RSM). The fermentations were carried out using the commercial Saccharomyces cerevisiae yeast, lager type, at 15&#176;C. </P><P> Results: The mathematical models and RSM obtained were an efficienct strategy to determine the optimum fermentation point for the ethanol volumetric productivity (wort concentration of 20.90 &#176;P and palm oil content of 0.19 % v/v) and for the apparent degree of fermentation (wort concentration of 16.90 &#176;P and palm oil content of 0.22% v/v). There was a good correlation between the experimental values observed and predicted by the model, indicating that the fit of the model was satisfactory and it can be inferred that the increase of the wort concentration and the nutritional supplementation with the palm oil reached an ethanol volumetric productivity of 0.55 g/L.h and an apparent degree of fermentation of 50.20 %. </P><P> Conclusion: Therefore, it can be concluded that our study demonstrates that nutritional supplementation with palm oil is an alternative and promising option for the breweries to increase productivity. There are recent patents also suggesting the advantages of using alternative nutritional supplements in beverage production.


AIChE Journal ◽  
2002 ◽  
Vol 48 (8) ◽  
pp. 1811-1826 ◽  
Author(s):  
Malcolm J. Davey ◽  
Kerry A. Landman ◽  
Mark J. McGuinness ◽  
Hong N. Jin

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohamed A. Farag ◽  
Moamen M. Elmassry ◽  
Masahiro Baba ◽  
Renée Friedman

Abstract Previous studies have shown that the Ancient Egyptians used malted wheat and barley as the main ingredients in beer brewing, but the chemical determination of the exact recipe is still lacking. To investigate the constituents of ancient beer, we conducted a detailed IR and GC-MS based metabolite analyses targeting volatile and non-volatile metabolites on the residues recovered from the interior of vats in what is currently the world’s oldest (c. 3600 BCE) installation for large-scale beer production located at the major pre-pharaonic political center at Hierakonpolis, Egypt. In addition to distinguishing the chemical signatures of various flavoring agents, such as dates, a significant result of our analysis is the finding, for the first time, of phosphoric acid in high level probably used as a preservative much like in modern beverages. This suggests that the early brewers had acquired the knowledge needed to efficiently produce and preserve large quantities of beer. This study provides the most detailed chemical profile of an ancient beer using modern spectrometric techniques and providing evidence for the likely starting materials used in beer brewing.


2018 ◽  
Vol 70 ◽  
pp. 76-84 ◽  
Author(s):  
Kara Osburn ◽  
Justin Amaral ◽  
Sara R. Metcalf ◽  
David M. Nickens ◽  
Cody M. Rogers ◽  
...  

2018 ◽  
Vol 85 (1) ◽  
Author(s):  
J. De Roos ◽  
D. Van der Veken ◽  
L. De Vuyst

ABSTRACTTraditional lambic beer production takes place through wort inoculation with environmental air and fermentation and maturation in wooden barrels. These wooden casks or foeders are possible additional inoculation sources of microorganisms for lambic worts. To date, however, these lambic barrels have been examined only with culture-dependent techniques, thereby missing a portion of the microorganisms present. Moreover, the effects of the cleaning procedures (involving high-pressure water and/or fumigation) and the barrel type on the microbial community structures of the interior surfaces of wooden lambic barrels were unclear. The culture-dependent plating and culture-independent amplicon sequencing of swab samples obtained from the interior surfaces of different wooden casks and foeders used for traditional lambic beer production in Belgium revealed that the microbial compositions of these surfaces differed statistically throughout the barrel-cleaning procedures applied. At the end of the cleaning procedures, amplicon sequencing still detected fermentation- and maturation-related microorganisms, although only a few colonies were still detectable using culture-dependent methods. It is possible that some of the surviving microorganisms were missed due to the presence of many of these cells in a viable but not culturable state and/or engrained deeper in the wood. These surviving microorganisms could act as an additional inoculation source, besides brewery air and brewery equipment, thereby helping to establish a stable microbial community in the wort to diminish batch-to-batch variations in fermentation profiles. Furthermore, the microbial compositions of the interior barrel surfaces differed statistically based on the barrel type, possibly reflecting different characteristics of the lambic barrels in terms of age, wood thickness, and wood porosity.IMPORTANCEAlthough the coolship step is generally regarded as the main contributor to the spontaneous inoculation by environmental air of fresh worts for lambic beer production, it is known that microorganisms often associate with specific surfaces present in a brewery. However, knowledge about the association of microorganisms with the interior surfaces of wooden lambic barrels is limited. To clarify the role of casks and foeders as additional microbial inoculation sources, it was important to determine the influence of the barrel characteristics and the cleaning procedures on the microbial communities of the interior barrel surfaces. Moreover, this helped to elucidate the complex spontaneous lambic beer fermentation and maturation process. It will allow further optimization of the lambic beer production process, as well as the wooden-barrel-cleaning procedures applied.


Sign in / Sign up

Export Citation Format

Share Document