scholarly journals Fusarium verticillioides SGE1 Is Required for Full Virulence and Regulates Expression of Protein Effector and Secondary Metabolite Biosynthetic Genes

2014 ◽  
Vol 27 (8) ◽  
pp. 809-823 ◽  
Author(s):  
Daren W. Brown ◽  
Mark Busman ◽  
Robert H. Proctor

The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary metabolites (SM), both of which can contribute to pathogenicity. Fusarium verticillioides is both an endophyte and a pathogen of maize and can grow as a saprophyte on dead plant material. During growth on live maize plants, the fungus can synthesize a number of toxic SM, including fumonisins, fusarins, and fusaric acid, that can contaminate kernels and kernel-based food and feed. In this study, the role of F. verticillioides SGE1 in pathogenicity and secondary metabolism was examined by gene deletion analysis and transcriptomics. SGE1 is not required for vegetative growth or conidiation but is required for wild-type pathogenicity and affects synthesis of multiple SM, including fumonisins and fusarins. Induced expression of SGE1 enhanced or reduced expression of hundreds of genes, including numerous putative effector genes that could contribute to growth in planta; genes encoding cell surface proteins; gene clusters required for synthesis of fusarins, bikaverin, and an unknown metabolite; as well as the gene encoding the fumonisin cluster transcriptional activator. Together, our results indicate that SGE1 has a role in global regulation of transcription in F. verticillioides that impacts but is not absolutely required for secondary metabolism and pathogenicity on maize.

2011 ◽  
Vol 57 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Charles W. Bacon ◽  
Dorothy M. Hinton

Maize ( Zea mays L.) is susceptible to infection by Fusarium verticillioides through autoinfection and alloinfection, resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria, and this includes bacterial endophytes, such as Bacillus mojavensis . In addition to producing fumonisins, which are phytotoxic and mycotoxic, F. verticillioides also produces fusaric acid, which acts both as a phytotoxin and as an antibiotic. The question now is Can B. mojavensis reduce lesion development in maize during the alloinfection process, simulated by internode injection of the fungus? Mutant strains of B. mojavensis that tolerate fusaric acid were used in a growth room study to determine the development of stalk lesions, indicative of maize seedling blight, by co-inoculations with a wild-type strain of F. verticillioides and with non-fusaric acid producing mutants of F. verticillioides. Lesions were measured on 14-day-old maize stalks consisting of treatment groups inoculated with and without mutants and wild-type strains of bacteria and fungi. The results indicate that the fusaric-acid-tolerant B. mojavensis mutant reduced stalk lesions, suggesting an in planta role for this substance as an antibiotic. Further, lesion development occurred in maize infected with F. verticillioides mutants that do not produce fusaric acid, indicating a role for other phytotoxins, such as the fumonisins. Thus, additional pathological components should be examined before strains of B. mojavensis can be identified as being effective as a biocontrol agent, particularly for the control of seedling disease of maize.


2012 ◽  
Vol 49 (7) ◽  
pp. 521-532 ◽  
Author(s):  
Daren W. Brown ◽  
Robert A.E. Butchko ◽  
Mark Busman ◽  
Robert H. Proctor

2016 ◽  
Vol 79 (9) ◽  
pp. 1498-1507 ◽  
Author(s):  
JOHN B. RIDENOUR ◽  
JONATHON E. SMITH ◽  
BURTON H. BLUHM

ABSTRACT Contamination of maize (Zea mays) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides. Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides, representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides.


2004 ◽  
Vol 82 (7) ◽  
pp. 878-885 ◽  
Author(s):  
C W Bacon ◽  
D M Hinton ◽  
J K Porter ◽  
A E Glenn ◽  
G Kuldau

An endophytic bacterium, Bacillus mojavensis Roberts, Nakamura & Cohan, was patented as a nonpathogenic biocontrol for plant diseases. However, before this bacterium can be used as a biocontrol agent, it must be evaluated against homologous competing organisms, some of which are equally successful endophytes, such as species of Fusarium that are symptomless endophytes, especially on maize. Preliminary field trials using this bacterium as a biocontrol agent against production of the fumonisin mycotoxins caused by infection of maize with Fusarium verticillioides (Sacc.) Nirenberg (= Fusarium moniliforme Sheldon) was less than that observed with greenhouse studies. Fusarium verticillioides and other species produce fusaric acid. Fusaric acid at concentrations as low as 22 µmol/L accounted for a 41% reduction in CFU compared with the control group, while concentrations of 223 µmol/L and higher resulted in total toxicity to the bacterium. Mutants of F. verticillioides that produced low concentrations of fusaric acid did not affect the endophytic CFU of the bacterium in seedlings. These results suggest that fusaric acid accounted for the reduction of bacterial colonization and the resulting poor biocontrol activity and suggested its importance to the fungus is as an antibiotic, which assists in the in planta competition for the intercellular niche colonized by F. verticillioides during its endotrophic state.Key words: Fusarium moniliforme, Fusarium verticillioides, bacterial endophyte, fungal endophyte, fumonisin.


2021 ◽  
Vol 7 (5) ◽  
pp. 337
Author(s):  
Daniel Peterson ◽  
Tang Li ◽  
Ana M. Calvo ◽  
Yanbin Yin

Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.


2021 ◽  
Vol 22 (5) ◽  
pp. 2435
Author(s):  
Marzia Beccaccioli ◽  
Manuel Salustri ◽  
Valeria Scala ◽  
Matteo Ludovici ◽  
Andrea Cacciotti ◽  
...  

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


2021 ◽  
Vol 9 (4) ◽  
pp. 768
Author(s):  
Karel Kopejtka ◽  
Yonghui Zeng ◽  
David Kaftan ◽  
Vadim Selyanin ◽  
Zdenko Gardian ◽  
...  

An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Tyrolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%). Its genomic DNA G + C content is 65.9%. Further, in silico DNA-DNA hybridization and calculation of the average nucleotide identity speaks for the close phylogenetic relationship of AAP5 and Sphingomonas glacialis. The high percentage (76.2%) of shared orthologous gene clusters between strain AAP5 and Sphingomonas paucimobilis NCTC 11030T, the type species of the genus, supports the classification of the two strains into the same genus. Strain AAP5 was found to contain C18:1ω7c (64.6%) as a predominant fatty acid (>10%) and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, six unidentified glycolipids, one unidentified phospholipid, and two unidentified lipids. The main respiratory quinone was ubiquinone-10. Strain AAP5 is a facultative photoheterotroph containing type-2 photosynthetic reaction centers and, in addition, contains a xathorhodopsin gene. No CO2-fixation pathways were found.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 214
Author(s):  
Agathe Roucou ◽  
Christophe Bergez ◽  
Benoît Méléard ◽  
Béatrice Orlando

The levels of fumonisins (FUMO)—mycotoxins produced by Fusarium verticillioides—in maize for food and feed are subject to European Union regulations. Compliance with the regulations requires the targeting of, among others, the agroclimatic factors influencing fungal contamination and FUMO production. Arvalis-Institut du végétal has created a national, multiyear database for maize, based on field survey data collected since 2003. This database contains information about agricultural practices, climatic conditions and FUMO concentrations at harvest for 738 maize fields distributed throughout French maize-growing regions. A linear mixed model approach highlights the presence of borers and the use of a late variety, high temperatures in July and October, and a water deficit during the maize cycle as creating conditions favoring maize contamination with Fusarium verticillioides. It is thus possible to target a combination of risk factors, consisting of this climatic sequence associated with agricultural practices of interest. The effects of the various possible agroclimatic combinations can be compared, grouped and classified as promoting very low to high FUMO concentrations, possibly exceeding the regulatory threshold. These findings should facilitate the creation of a national, informative and easy-to-use prevention tool for producers and agricultural cooperatives to manage the sanitary quality of their harvest.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Donghui Choe ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

ABSTRACT Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3′-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5′ and 3′ UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp. IMPORTANCE Streptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3′-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3′-end sequence, potential riboregulators, and potential 3′-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.


2021 ◽  
Author(s):  
David A Baltrus ◽  
Qian Feng ◽  
Brian H Kvitko

Integrative Conjugative Elements (ICEs) are replicons that can insert and excise from chromosomal locations in a site specific manner, can conjugate across strains, and which often carry a variety of genes useful for bacterial growth and survival under specific conditions. Although ICEs have been identified and vetted within certain clades of the agricultural pathogen Pseudomonas syringae, the impact of ICE carriage and transfer across the entire P. syringae species complex remains underexplored. Here we identify and vet an ICE (PmaICE-DQ) from P. syringae pv. maculicola ES4326, a strain commonly used for laboratory virulence experiments, demonstrate that this element can excise and conjugate across strains, and contains loci encoding multiple type III effector proteins. Moreover, genome context suggests that another ICE (PmaICE-AOAB) is highly similar in comparison with and found immediately adjacent to PmaICE-DQ within the chromosome of strain ES4326, and also contains multiple type III effectors. Lastly, we present passage data from in planta experiments that suggests that genomic plasticity associated with ICEs may enable strains to more rapidly lose type III effectors that trigger R-gene mediated resistance in comparison to strains where nearly isogenic effectors are not present in ICEs. Taken together, our study sheds light on a set of ICE elements from P. syringae pv. maculicola ES4326 and highlights how genomic context may lead to different evolutionary dynamics for shared virulence genes between strains.


Sign in / Sign up

Export Citation Format

Share Document