scholarly journals Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence

2015 ◽  
Vol 28 (3) ◽  
pp. 286-297 ◽  
Author(s):  
Tiffany M. Lowe ◽  
Florent Ailloud ◽  
Caitilyn Allen

Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity.

2019 ◽  
Author(s):  
Corri D. Hamilton ◽  
Olivia Steidl ◽  
April M. MacIntyre ◽  
Caitilyn Allen

The soilborne pathogen Ralstonia solanacearum (Rs) causes lethal bacterial wilt disease of tomato and many other crops by infecting host roots and then colonizing the xylem vessels. Tomato xylem sap is nutritionally limiting but it does contain sucrose and trehalose. Transcriptomic analyses revealed that Rs expresses distinct sets of catabolic pathways at low cell density (LCD) and high cell density (HCD). To investigate the links between bacterial catabolism, infection stage, and virulence, we measured the in planta fitness of bacterial mutants lacking carbon catabolic pathways expressed at either LCD or HCD. We hypothesized that the bacterium needs LCD carbon sources early in disease (root infection) while HCD carbon sources are required during late disease (stem colonization). An Rs ΔiolG mutant unable to use the LCD nutrient myo-inositol was defective in root colonization but once it reached the stem, this strain colonized and caused symptoms as well as wild type. In contrast, Rs mutants unable to use sucrose (ΔscrA), trehalose (ΔtreA), or both (ΔscrA/treA), infected roots as well as wild type but were defective in colonization and competitive fitness in tomato mid-stems and were reduced in bacterial wilt virulence. Additionally, xylem sap from tomato plants colonized by ΔscrA, ΔtreA, or ΔscrA/treA contained more sucrose than sap from plants colonized by wild-type Rs. Together, these findings suggest Rs metabolism is specifically adapted for success in the different nutritional environments of plant roots and xylem sap.


2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2021 ◽  
Vol 24 (2) ◽  
pp. 107-120
Author(s):  
SMN Islam ◽  
SS Siddique ◽  
MZH Chowdhury ◽  
NJ Mishu

A native Trichoderma isolate was collected from the agricultural soil of Gazipur. This isolate was identified as a Trichoderma asperellum through morphology and analysis of internal transcribed spacer (ITS) region of ribosomal RNA gene sequence and reconstruction of the phylogenetic tree. The antagonistic effects of the newly identified T. asperellum isolate were assessed against brinjal bacterial wilt caused by Ralstonia solanacearum both in vitro and in planta. Both qualitative and quantitative bioassays were conducted in vitro. For qualitative tests, dual culture and antibacterial activity were carried out, and pathogen growth was observed visually. The antagonism of T. asperellum cell free culture filtrate on the growth of R. solanacearum was conducted in a quantitative test. Successful antagonism was recorded after both in vitro qualitative tests. In addition, the lowest colony forming unit was recorded in 100% of CFC (2.4±0.51 ×103 cfu/ml) in quantitative test. The T. asperellum inoculated plant showed low disease incidence (13.33%) when seedlings were challenged with R. solanacearum in planta experiment. Disease incidence was 100% for seedlings when treated with only R. solanacearum. The results showed that the isolated and identified T. asperellum isolate suppressed R. solanacearum growth in vitro and protected the seedling from wilting in planta. Therefore, this isolate could be considered as a potential isolate. Ann. Bangladesh Agric. (2020) 24(2) : 107-120


2019 ◽  
Vol 2 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Rachmad Saputra ◽  
Triwidodo Arwiyanto ◽  
Arif Wibowo

Streptomyces sp. bacteria have the potential to produce antibiotic compounds, which are one of the mechanisms that are widely used in biological control. However, in general, biological control mechanisms also occur through competition, cell wall degradation and induced resistance. This study was aimed to determine the physiological, biochemical and molecular characteristics of two isolates of Streptomyces sp. (S-4 and S16 isolates) isolated from the tomatoes roots, and to find out their ability to control Ralstonia solanacearum, which causes bacterial wilt disease on a wide range of hosts. The results showed both Streptomyces sp. isolates had several different physiological and biochemical characteristics and had a different ability to inhibit R. solanacearum in vitro. Streptomyces sp. S-16 isolate had a high similarity with Streptomyces diastaticus subsp. ardesiacus strain NRRL B-1773T based on the molecular identification results. Further research needs to be done to see the potential inhibition of the two Streptomyces isolates in inhibiting the development of bacterial wilt disease in tomato plants caused by R. solanacearum.


2018 ◽  
Vol 31 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Haibin Lu ◽  
Saul Lema A ◽  
Marc Planas-Marquès ◽  
Alejandro Alonso-Díaz ◽  
Marc Valls ◽  
...  

The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available. The early steps of infection, essential for colonization, as well as the early plant defense responses remain mostly unknown. Here, we have set up a simple, in vitro Arabidopsis thaliana–R. solanacearum pathosystem that has allowed us to identify three clear root phenotypes specifically associated to the early stages of infection: root-growth inhibition, root-hair formation, and root-tip cell death. Using this method, we have been able to differentiate, on Arabidopsis plants, the phenotypes caused by mutants in the key bacterial virulence regulators hrpB and hrpG, which remained indistinguishable using the classical soil-drench inoculation pathogenicity assays. In addition, we have revealed the previously unknown involvement of auxins in the root rearrangements caused by R. solanacearum infection. Our system provides an easy-to-use, high-throughput tool to study R. solanacearum aggressiveness. Furthermore, the observed phenotypes may allow the identification of bacterial virulence determinants and could even be used to screen for novel forms of early plant resistance to bacterial wilt.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 687-692 ◽  
Author(s):  
Péninna Deberdt ◽  
Benjamin Perrin ◽  
Régine Coranson-Beaudu ◽  
Pierre-François Duyck ◽  
Emmanuel Wicker

To control bacterial wilt (Ralstonia solanacearum, phylotype IIB/4NPB), the antimicrobial effect of Allium fistulosum aqueous extract was assessed as a preplant soil treatment. Three concentrations of extract (100, 50, and 25%, 1:1 [wt/vol]) were evaluated by in vitro inhibition assay and in vivo experiments in a growth chamber. In vitro, A. fistulosum (100 and 50%) suppressed growth of R. solanacearum. Preplant treatment of the soil with A. fistulosum extract significantly reduced the R. solanacearum populations. No pathogen was detected in the soil after treatment with 100% concentrated extract from the third day after application until the end of the experiment. A. fistulosum also significantly reduced the incidence of tomato bacterial wilt. In the untreated control, the disease affected 61% of the plants whereas, with 100 and 50% extracts, only 6 and 14% of the plants, respectively, were affected. These results suggest that A. fistulosum extracts could be used in biocontrol-based management strategies for bacterial wilt of tomato.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Sabry A. Hassan

Abstract Background Bacterial wilt of tomato (BWP) caused by Ralstonia solanacearum (Smith) is a very important disease. Biological control of this disease is a very important tool to protect the plant and environment from pollution of chemical control. Results Twenty isolates of genus, Pantoea were isolated from healthy tomato root. Out of 20 isolates, 2 strains, PHYTPO1 and PHYTPO2, showed highly antagonistic property to control the growth of R. solanacearum in vitro conditions. They were identified as P. agglomerans by using 16S rRNA nucleotide sequence analysis. The 2 isolates were selected to study their effect (as cell suspension or culture filtrate) on the bacterial wilt under greenhouse conditions. PHYTPO1 inhibited maximum growth reduction of R. solanacearum and formed 2.5 cm2 of inhibition zone, followed by 1.2 cm2 in PHYTOPO2 under in vitro conditions. Treating with both isolates of P. agglomerans was significantly reduced disease severity of tomato wilt disease. The disease severity was reduced to 74.1 when treated as cell suspension, while when treated as culture filtrate, it reduced the disease severity up to 69.4 than infected control. Conclusion The strains of Pantoea can be used as an ecofriendly method to control of the most economic pathogen of tomato under greenhouse conditions. Further study is needed to find an appropriate formulation and approving application of these bacteria under field conditions.


Sign in / Sign up

Export Citation Format

Share Document