scholarly journals Effect of Allium fistulosum Extract on Ralstonia solanacearum Populations and Tomato Bacterial Wilt

Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 687-692 ◽  
Author(s):  
Péninna Deberdt ◽  
Benjamin Perrin ◽  
Régine Coranson-Beaudu ◽  
Pierre-François Duyck ◽  
Emmanuel Wicker

To control bacterial wilt (Ralstonia solanacearum, phylotype IIB/4NPB), the antimicrobial effect of Allium fistulosum aqueous extract was assessed as a preplant soil treatment. Three concentrations of extract (100, 50, and 25%, 1:1 [wt/vol]) were evaluated by in vitro inhibition assay and in vivo experiments in a growth chamber. In vitro, A. fistulosum (100 and 50%) suppressed growth of R. solanacearum. Preplant treatment of the soil with A. fistulosum extract significantly reduced the R. solanacearum populations. No pathogen was detected in the soil after treatment with 100% concentrated extract from the third day after application until the end of the experiment. A. fistulosum also significantly reduced the incidence of tomato bacterial wilt. In the untreated control, the disease affected 61% of the plants whereas, with 100 and 50% extracts, only 6 and 14% of the plants, respectively, were affected. These results suggest that A. fistulosum extracts could be used in biocontrol-based management strategies for bacterial wilt of tomato.

2021 ◽  
Vol 12 ◽  
Author(s):  
Khanh Duy Le ◽  
Jeun Kim ◽  
Hoa Thi Nguyen ◽  
Nan Hee Yu ◽  
Ae Ran Park ◽  
...  

Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31–10% and 0.31–1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance.


2016 ◽  
Vol 14 (3) ◽  
pp. e1006 ◽  
Author(s):  
Naseerud Din ◽  
Musharaf Ahmad ◽  
Muhammad Siddique ◽  
Asad Ali ◽  
Ishrat Naz ◽  
...  

Phytobiocides are a good alternative to chemicals in managing bacterial diseases including bacterial wilt of tomato caused by Ralstonia solanacearum. In the present research study, finely ground dried powders of seven widely available medicinal plants/weeds species viz., Peganum harmala (esfand or wild rue), Calotropis procera (sodom apple), Melia azedarach (white cedar), Allium sativum (garlic), Adhatoda vasica (malabar nut), Tagetes patula (marigold) and Nerium oleander (oleander) were assessed for their anti-microbial activity, both in-vitro (10% w/v) and in-vivo (10, 20, 30, and 40 g/kg of potted soil) against R. solanacearum. Aqueous extracts (prepared as 10% w/v, soaking for 48-72 h and filtering) of C. procera, A. vasica, and T. patula inhibited the in-vitro growth of the bacterial pathogen over 60% of that produced by the standard antibiotic streptomycin. A. sativum, N. oleander and P. harmala aqueous extracts were less effective while M. azedarach showed no effect against R. solanacearum. The higher dose (40 g/kg of soil) of C. procera, A. vasica and T. patula decreased disease severity quite effectively and increased yield and plant growth characters as much as the standard antibiotic did. No phytotoxicity of medicinal plants powder was observed on tomato plants. Alkaloids, flavonoids, tannins, saponins and terpenoids were detected in the aqueous extracts of T. patula and A. vasica whereas C. procera was found to have only alkaloids, flavonoids, tannins and saponins. Our data suggest that dried powders of T. patula, C. procera and A. vasica (40 g/kg of soil) could be used as an effective component in the integrated disease management programs against bacterial wilt of tomato.


2016 ◽  
Vol 21 (3) ◽  
pp. 131
Author(s):  
S. Y. HARTATI ◽  
E. HADIPOENTYANTI ◽  
AMALIA AMALIA ◽  
NURSALAM NURSALAM

<p>ABSTRAK</p><p>Layu   bakteri  yang   disebabkan   oleh <em>  Ralstonia   solanacearum <br /> </em>merupakan salah satu penyakit penting pada tanaman nilam. Perakitan <br /> varietas nilam tahan terhadap penyakit tersebut yang dilakukan melalui <br /> induksi keragaman somaklonal telah menghasilkan beberapa somaklon <br /> yang tahan terhadap <em>R. solanacearum</em> secara <em>in-vitro</em>. Tujuan penelitian <br /> adalah menguji tingkat ketahanan somaklon tersebut terhadap penyakit <br /> layu  pada  kondisi  rumah  kaca (<em>in-vivo</em>).  Penelitian  disusun  dalam <br /> Rancangan  Acak  Lengkap  dengan 27  perlakuan, 3  ulangan,  dan 10 <br /> tanaman/ulangan. Sebagian akar dari somaklon nilam dilukai (dipotong), <br /> selanjutnya diinokulasi (disiram) dengan suspensi<em> R. solanacearum</em> dengan <br /> berbagai konsentrasi 10<sup>5</sup>, 10<sup>7</sup>, dan 10<sup>9 </sup><em>cfu</em>/ml, sebanyak 50 ml/tanaman. <br /> Hasil penelitian menunjukkan, bahwa somaklon yang diinokulasi dengan <br /> konsentrasi 10<sup>5 </sup><em>cfu</em>/ml, 50  ml/tanaman  semuanya  tidak  menunjukkan <br /> gejala layu. Somaklon yang diinokulasi dengan konsentrasi 107 dan 10<sup>9</sup></p><p><em>cfu</em>/ml,  50 ml/tanaman, sebagian layu dan mati.  Dari somaklon yang</p><p>7</p><p>diinokulasi dengan konsentrasi 10     <em>cfu</em>/ml, 50 ml/tanaman, 8 di antaranya</p><p>menunjukkan respon sangat tahan, 4 tahan, dan 5 agak tahan. Ke 17 <br /> somaklon tersebut mempunyai intensitas penyakit &lt;50% dan semua lebih <br /> tahan dari pada varietas Sidikalang (agak toleran). Dari 17 somaklon yang <br /> diinokulasi dengan konsentrasi 10<sup>9 </sup><em>cfu</em>/ml, 50 ml/tanaman, 2 di antaranya <br /> sangat tahan dan 7 somaklon tahan. Teknik skrining ini dapat digunakan <br /> sebagai  metode  standar  untuk pengujian  ketahanan  nilam  terhadap <br /> penyakit layu.</p><p>Kata kunci:  Skrining  ketahanan,  somaklon,  nilam,  penyakit  layu,<em>  R. solanacearum.</em></p><p><em> </em></p><p><em></em>ABSTRACT</p><p>Resistance-Screening of Patchouli Somaclones on Bacterial Wilt Disease (Ralstonia solanacearum) </p><p>Bacterial wilt caused by <em>Ralstonia solanacearum </em>is one of the most <br /> important  diseases  on patchouli.  The  developing patchouli resistance <br /> varieties against  wilt  disease  conducted  through the  induction  of <br /> somaclonal variation produced resistant patchouli somaclones against <em>R. <br /> </em><em>solanacearum </em>(in-vitro). The aim of this  research was to screen the <br /> resistance of those patchouli somaclones against wilt disease under a glass <br /> house condition (in-vivo). The research was conducted in a Randomized <br /> Completely Design  with 27 treatments, 3  replicates,  and 10  plants/ <br /> replicate. Some roots of the patchouli somaclones were wounded (cut), <br /> then inoculated (drenched)   with <em>  R.   solanacearum</em>  suspension   in <br /> concentration of 10<sup>5</sup>, 10<sup>7</sup>, and 10<sup>9 </sup><em>cfu</em>/ml; 50 ml/plant. The result showed, <br /> that all the patchouli somaclones inoculated with <em>R. solanacearum</em> 10<sup>5 <br /> </sup>cfu/ml, 50 ml/plant were not show any wilt sympthom. Whereas, some <br /> somaclones inoculated with the higher concentration 10<sup>7 </sup>and 109 cfu/ml, 50 ml/plant were wilted and died. Among the somaclones inoculated with  the concentration of 10<sup>7</sup>  cfu/ml, 50 ml/plant, 8 of them were highly  resistant, 4 were resistant, and 5 were moderately resistant. The disease  intencity of those 17 somaclones were &lt;50% and they were more resistant than  the  Sidikalang  variety  (moderately  tolerant).  Among  those  17 <br /> somaclones inoculated with the concentration of 10<sup>9 </sup>cfu/ml, 50 ml/plant, 2 <br /> of them were highly resistant and 7 were resistant. This screening method <br /> could be used as a standard protocol for patchouli resistance screening <br /> against wilt disease.</p><p>Kata kunci: Screening resistance, somaclone, patchouli, wilt disease, <em>R. solanacearum.</em></p>


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 453-464 ◽  
Author(s):  
Jana Erjavec ◽  
Maja Ravnikar ◽  
Jože Brzin ◽  
Tine Grebenc ◽  
Andrej Blejec ◽  
...  

In total, 150 protein extracts from 94 different basidiomycete and ascomycete wild mushroom species were tested for antibacterial activity against the quarantine plant-pathogen bacterium Ralstonia solanacearum. In in vitro microtiter plate assays, 15 extracts with moderate to high antibacterial activities were identified: 11 completely inhibited bacterial growth and 4 showed partial inhibition. Of these 15 extracts, 5 were further tested and 3 extracts slowed disease progression and reduced disease severity in artificially inoculated tomato and potato plants. However, the in vitro activities of the extracts did not always correlate with their in vivo activities, which emphasizes the importance of performing early screening tests also in vivo. Testing of selected extracts against 12 R. solanacearum strains identified 6 with potential for broader applicability. Further analysis of extracts from Amanita phalloides and Clitocybe geotropa showed that the active substances are proteins with an approximate size of 180 kDa. To our knowledge, this is the first in vitro and in vivo study that demonstrates that mushroom protein extracts can be promising for treatment of bacterial wilt caused by R. solanacearum.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 124-131
Author(s):  
Péninna Deberdt ◽  
Isabelle Davezies ◽  
Régine Coranson-Beaudu ◽  
Alexandra Jestin

Bacterial wilt, caused by Ralstonia solanacearum, is a major plant disease throughout the Caribbean. The ability of the essential oil from Pimenta racemosa var. racemosa to control bacterial wilt of tomato (R. solanacearum, phylotype IIB/4NPB) was investigated. Lemongrass (chemotype 1)-, aniseed (chemotype 2)-, and clove (chemotype 3)-scented chemotypes of P. racemosa var. racemosa essential oil were tested. Six concentrations of emulsified essential oil (from 0.01 to 0.14% [v/v]) were evaluated by in vitro culture amendment assays and by in vivo experiments in greenhouse. Chemotype 3 displayed remarkable in vitro antibacterial activity against R. solanacearum, because the minimum inhibitory concentration was only 0.03%, compared with 0.14% for chemotypes 1 and 2. In greenhouse experiments, no incidence of bacterial wilt was observed in tomato plants grown in soil treated with chemotype 3 of P. racemosa var. racemosa at a concentration of 0.14%. In the untreated control soil, 62% of plants displayed symptoms of bacterial wilt. Treatment with chemotype 3 significantly increased the growth of tomato plants compared with untreated controls. These results suggest that chemotype 3 of P. racemosa var. racemosa essential oil is a good candidate for further development as a soil biofumigant for the control of tomato bacterial wilt.


2020 ◽  
Vol 11 ◽  
pp. 138-145
Author(s):  
N’guessan Aya Carine ◽  
Camara Brahima ◽  
Amari Ler N’Ogn Dadé Georges Elisée ◽  
Doumbouya Mohamed ◽  
Pakora Gilles Alex ◽  
...  

The tomato crop is confronted to numerous soilborne pathogens, including Ralstonia solanacearum, which considerably limits its production. In order to control this bacterium, a biological control approach has been considered by evaluating the efficacy of the NECO biopesticide against this bacteriosis. In vitro confrontations were carried out using a range of five concentrations of the biopesticide. In vivo, NECO solutions of 5 and 10 mL/L were incorporated into soil previously infested with R. solanacearum before transplanting tomato plants. Zones of bacterial growth inhibition were observed after the application of the NECO biopesticide. Results showed that the 20 mL/L concentration resulted in a higher inhibition rate. The biopesticide at the 10 mL/L concentration significantly reduced the incidence of bacterial wilt (54.05%) under in vivo conditions. The NECO biopesticide could be used as a control agent for Ralstonia solanacearum.


Author(s):  
Lucy N. Karanja ◽  
Isaac O. K’Owino ◽  
Phanice T. Wangila ◽  
Rose C. Ramkat

Aims: To determine the phytochemical composition and antibacterial activity of Solanum incanum fruits against Ralstonia solanacearum. Study Design: Experimental design involving completely randomized design Place and Duration of Study: The study was conducted at department of Chemistry and Biochemistry, School of Sciences and Aerospace studies, Moi University, Kenya, between January and June 2021.   Methodology: Extraction was done by maceration using ethanol as the extracting solvent. Phytochemical screening was done following standard procedures. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) were determined using the Folin–Ciocalteu colorimetric method and aluminum chloride colorimetric assay respectively. The extract was further analyzed using Gas Chromatography Mass spectroscopy (GC-MS) and Fourier transformed Infrared (FT-IR). In vitro antibacterial activity was determined using disc diffusion method while in vivo studies was done under greenhouse conditions. Results: Phytochemical analysis showed presence of alkaloids, glycosides, steroids, tannins, flavonoids, phenols, saponins and terpenoids. The TPC and TFC were found to be 84.997 ± 0.2 mg GAE/g and 20.535 ± 0.2 mg/g QE of dried sample respectively. GC-MS analysis revealed the presence of 15 compounds, (9E)-1-Methoxy-9-Octadecene (26.85%), 9-Octadecenamide (Z) (21.43%), E-15-Heptadecenal (7.28%), E-14-Hexadecenal (6.28%), 2,4-Di-tert-butylphenol (4.96%) among others. FT-IR analysis revealed presence of OH, C-H, N-H, CO functional groups at wavenumbers 3348 cm-1, 2931 cm-1, 1589 cm-1, and 1218 cm-1 respectively. The antibacterial activity for in vitro studies at concentrations 0.01, 0.05, 0.10, and 0.15 g/10 mL, the diameters of zone of inhibition were 20.75 ± 1.3, 25.75 ± 0.5, 27.25 ± 0.5, and 30.75 ± 0.5 mm respectively. This was comparable (P= .02) to that of ampicillin (positive control) which had zones of inhibition of 26.75 ± 0.5, 28.75 ± 0.5, 31.75 ± 0.4, and 35.00 ± 0.0 mm at the  concentrations respectively. For the in vivo studies the plant extract and ampicillin delayed the development of the disease by eight and ten days post-inoculation respectively while symptoms of bacterial wilt for water treatment (negative control) were observed four days post-inoculation. Conclusion: The plant extract had remarkable antibacterial activity and can be used to make viable formulations to control the devastating bacterial wilt disease.


Mycorrhiza ◽  
2017 ◽  
Vol 27 (7) ◽  
pp. 719-723 ◽  
Author(s):  
Marie Chave ◽  
Patrice Crozilhac ◽  
Péninna Deberdt ◽  
Katia Plouznikoff ◽  
Stéphane Declerck

2021 ◽  
Vol 12 ◽  
Author(s):  
Shili Li ◽  
Jing Pi ◽  
Hongjiang Zhu ◽  
Liang Yang ◽  
Xingguo Zhang ◽  
...  

In rhizospheres, chemical barrier-forming natural compounds play a key role in preventing pathogenic bacteria from infecting plant roots. Here, we sought to identify specific phenolic exudates in tobacco (Nicotiana tobaccum) plants infected by the soil-borne pathogen Ralstonia solanacearum that may exhibit antibacterial activity and promote plant resistance against pathogens. Among detected phenolic acids, only caffeic acid was significantly induced in infected plants by R. solanacearum relative to healthy plants, and the concentration of caffeic acid reached 1.95 μg/mL. In vivo, caffeic acid at 200 μg/mL was highly active against R. solanacearum and obviously damaged the membrane structure of the R. solanacearum cells, resulting in the thinning of the cell membrane and irregular cavities in cells. Moreover, caffeic acid significantly inhibited biofilm formation by repressing the expression of the lecM and epsE genes. In vitro, caffeic acid could effectively activate phenylalanine ammonia-lyase (PAL) and peroxidase (POD) and promote the accumulation of lignin and hydroxyproline. In pot and field experiments, exogenous applications of caffeic acid significantly reduced and delayed the incidence of tobacco bacterial wilt. Taken together, all these results suggest that caffeic acid played a crucial role in defending against R. solanacearum infection and was a potential and effective antibacterial agent for controlling bacterial wilt.


Sign in / Sign up

Export Citation Format

Share Document