scholarly journals Fusarium head blight resistance in European winter wheat: insights from genome-wide transcriptome analysis

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Buerstmayr ◽  
Christian Wagner ◽  
Tetyana Nosenko ◽  
Jimmy Omony ◽  
Barbara Steiner ◽  
...  

Abstract Background Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Resistance to FHB is quantitatively controlled by the combined effects of many small to medium effect QTL. Flowering traits, especially the extent of extruded anthers, are strongly associated with FHB resistance. Results To characterize the genetic basis of FHB resistance, we generated and analyzed phenotypic and gene expression data on the response to Fusarium graminearum (Fg) infection in 96 European winter wheat genotypes, including several lines containing introgressions from the highly resistant Asian cultivar Sumai3. The 96 lines represented a broad range in FHB resistance and were assigned to sub-groups based on their phenotypic FHB severity score. Comparative analyses were conducted to connect sub-group-specific expression profiles in response to Fg infection with FHB resistance level. Collectively, over 12,300 wheat genes were Fusarium responsive. The core set of genes induced in response to Fg was common across different resistance groups, indicating that the activation of basal defense response mechanisms was largely independent of the resistance level of the wheat line. Fg-induced genes tended to have higher expression levels in more susceptible genotypes. Compared to the more susceptible non-Sumai3 lines, the Sumai3-derivatives demonstrated higher constitutive expression of genes associated with cell wall and plant-type secondary cell wall biogenesis and higher constitutive and Fg-induced expression of genes involved in terpene metabolism. Gene expression analysis of the FHB QTL Qfhs.ifa-5A identified a constitutively expressed gene encoding a stress response NST1-like protein (TraesCS5A01G211300LC) as a candidate gene for FHB resistance. NST1 genes are key regulators of secondary cell wall biosynthesis in anther endothecium cells. Whether the stress response NST1-like gene affects anther extrusion, thereby affecting FHB resistance, needs further investigation. Conclusion Induced and preexisting cell wall components and terpene metabolites contribute to resistance and limit fungal colonization early on. In contrast, excessive gene expression directs plant defense response towards programmed cell death which favors necrotrophic growth of the Fg pathogen and could thus lead to increased fungal colonization.

2021 ◽  
Author(s):  
Maria Buerstmayr ◽  
Christian Wagner ◽  
Tetyana Nosenko ◽  
Jimmy Omony ◽  
Barbara Steiner ◽  
...  

Abstract Background Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Resistance to FHB is quantitatively controlled by the combined effects of many small to medium effect QTL. Flowering traits, especially the extent of extruded anthers, are strongly associated with FHB resistance. Results To characterize the genetic basis of FHB resistance, we generated and analyzed phenotypic and gene expression data on the response to Fusarium graminearum (Fg) infection in 96 European winter wheat genotypes, including several lines containing introgressions from the highly resistant Asian cultivar Sumai3. The 96 lines represented a broad range in FHB resistance and were assigned to sub-groups based on their phenotypic FHB severity score. Comparative analyses were conducted to connect sub-group-specific expression profiles in response to Fg infection with FHB resistance level. Collectively, over 12300 wheat genes were Fusarium responsive. The core set of genes induced in response to Fg was common across different resistance groups, indicating that the activation of basal defense response mechanisms was largely independent of the resistance level of the wheat line. Fg-induced genes tended to have higher expression levels in more susceptible genotypes. Compared to the more susceptible non-Sumai3 lines, the Sumai3-derivatives demonstrated higher constitutive expression of genes associated with cell wall and plant-type secondary cell wall biogenesis and higher constitutive and Fg-induced expression of genes involved in terpene metabolism. Gene expression analysis of the FHB QTL Qfhs.ifa-5A identified a constitutively expressed gene encoding a stress response NST1-like protein (TraesCS5A01G211300LC) as a candidate gene for FHB resistance. NST1 genes are key regulators of secondary cell wall biosynthesis in anther endothecium cells. Whether the stress response NST1-like gene affects anther extrusion, thereby affecting FHB resistance, needs further investigation. Conclusion Induced and preexisting cell wall components and terpene metabolites contribute to resistance and limit fungal colonization early on. In contrast, excessive gene expression directs plant defense response towards programmed cell death which favors necrotrophic growth of the Fg pathogen and could thus lead to increased fungal colonization.


Genome ◽  
2021 ◽  
Author(s):  
Aparna Haldar ◽  
Farideh Tekieh ◽  
Margaret Balcerzak ◽  
Danielle Wolfe ◽  
DaEun Lim ◽  
...  

The tall wheatgrass species <i>Thinopyrum elongatum</i> carries on the long arm of its chromosome 7E a locus contributing strongly to resistance to fusarium head blight (FHB), a devastating fungal disease affecting wheat crops in all temperate areas of the world. Introgression of <i>Th. elongatum</i> 7E chromatin into chromosome 7D of wheat was induced by the <i>ph1b</i> mutant of CS. Recombinants between chromosome 7E and wheat chromosome 7D, induced by the <i>ph1b</i> mutation, were monitored by a combination of molecular markers and phenotyping for FHB resistance. Progeny of up to five subsequent generations derived from two lineages, 64-8 and 32-5, were phenotyped for FHB symptoms and genotyped using published and novel 7D- and 7E-specific markers. Fragments from the distal end of 7EL, still carrying FHB resistance and estimated to be less than 114 and 66 Mbp, were identified as introgressed into wheat chromosome arm 7DL of progeny derived from 64-8 and 32-5, respectively. Gene expression analysis revealed variation in the level of expression of genes from the distal ends of 7EL and 7DL in the introgressed progeny. The 7EL introgressed material will facilitate use of the 7EL FHB resistance locus in wheat breeding programs.


Planta ◽  
2014 ◽  
Vol 239 (5) ◽  
pp. 1041-1053 ◽  
Author(s):  
Yongfang Wan ◽  
Cristina Gritsch ◽  
Theodora Tryfona ◽  
Mike J. Ray ◽  
Ambrose Andongabo ◽  
...  

2008 ◽  
Vol 21 (12) ◽  
pp. 1571-1581 ◽  
Author(s):  
Amber E. Stephens ◽  
Donald M. Gardiner ◽  
Rosemary G. White ◽  
Alan L. Munn ◽  
John M. Manners

Fusarium graminearum causes head blight (FHB) and crown rot (CR) diseases in wheat. Compared with FHB, CR symptom development occurs slowly, usually taking 4 to 8 weeks to become visible. To characterize CR development, we used histological and real-time quantitative polymerase chain reaction analyses to assess fungal colonization during a timecourse of infection. Three distinct phases of infection were identified: i) initial spore germination with formation of a superficial hyphal mat at the inoculation point, ii) colonization of the adaxial epidermis of the outer leaf sheath and mycelial growth from the inoculation point to the crown, concomitant with a drop in fungal biomass, and iii) extensive colonization of the internal crown tissue. Fungal gene expression was examined during each phase using Affymetrix GeneChips. In total, 1,839 F. graminearum genes were significantly upregulated, including some known FHB virulence genes (e.g., TRI5 and TRI14), and 2,649 genes were significantly downregulated in planta compared with axenically cultured mycelia. Global comparisons of fungal gene expression with published data for FHB showed significant similarities between early stages of FHB and CR. These results indicate that CR disease development involves distinct phases of colonization, each of which is associated with a different fungal gene expression program.


2007 ◽  
Vol 20 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Takumi Shimizu ◽  
Kouji Satoh ◽  
Shoshi Kikuchi ◽  
Toshihiro Omura

An analysis, using microarrays, of gene expression in rice plants infected with Rice dwarf virus revealed significant decreases in levels of expression of genes that are involved in the formation of cell walls, reflecting the stunted growth of diseased plants. The expression of plastid-related genes also was suppressed, as anticipated from the white chlorotic appearance of infected leaves. By contrast, the expression of defense- and stress-related genes was enhanced after viral infection. These results suggest that virus-infected rice plants attempt to survive viral infection and replication by raising the levels of expression of defense- and stress-related genes while suppressing the expression of genes required for the elongation of cells and photosynthesis.


2014 ◽  
Vol 197 (3) ◽  
pp. 603-614 ◽  
Author(s):  
Margarita Bernal-Cabas ◽  
Juan Alfonso Ayala ◽  
Tracy L. Raivio

The Cpx envelope stress response mediates a complex adaptation to conditions that cause protein misfolding in the periplasm. A recent microarray study demonstrated that Cpx response activation led to changes in the expression of genes known, or predicted, to be involved in cell wall remodeling. We sought to characterize the changes that the cell wall undergoes during activation of the Cpx pathway inEscherichia coli. Luminescent reporters of gene expression confirmed that LdtD, a putativel,d-transpeptidase; YgaU, a protein of unknown function; and Slt, a lytic transglycosylase, are upregulated in response to Cpx-inducing conditions. Phosphorylated CpxR binds to the upstream regions of these genes, which contain putative CpxR binding sites, suggesting that regulation is direct. We show that the activation of the Cpx response causes an increase in the abundance of diaminopimelic acid (DAP)-DAP cross-links that involves LdtD and YgaU. Altogether, our data indicate that changes in peptidoglycan structure are part of the Cpx-mediated adaptation to envelope stress and indicate a role for the uncharacterized geneygaUin regulating cross-linking.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250977
Author(s):  
Lauren V. Wilkinson ◽  
Morgan A. Alford ◽  
Shannon R. Coleman ◽  
Bing C. Wu ◽  
Amy H. Y. Lee ◽  
...  

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that causes considerable human morbidity and mortality, particularly in nosocomial infections and individuals with cystic fibrosis. P. aeruginosa can adapt to surface growth by undergoing swarming motility, a rapid multicellular movement that occurs on viscous soft surfaces with amino acids as a nitrogen source. Here we tested the small synthetic host defense peptide, innate defense regulator 1018, and found that it inhibited swarming motility at concentrations as low as 0.75 μg/ml, well below the MIC for strain PA14 planktonic cells (64 μg/ml). A screen of the PA14 transposon insertion mutant library revealed 29 mutants that were more tolerant to peptide 1018 during swarming, five of which demonstrated significantly greater swarming than the WT in the presence of peptide. Transcriptional analysis (RNA-Seq) of cells that were inoculated on swarming plates containing 1.0 μg/ml peptide revealed differential expression of 1,190 genes compared to cells swarming on plates without peptide. Furthermore, 1018 treatment distinctly altered the gene expression profile of cells when compared to that untreated cells in the centre of the swarm colonies. Peptide-treated cells exhibited changes in the expression of genes implicated in the stringent stress response including those regulated by anr, which is involved in anaerobic adaptation, indicative of a mechanism by which 1018 might inhibit swarming motility. Overall, this study illustrates potential mechanisms by which peptide 1018 inhibits swarming surface motility, an important bacterial adaptation associated with antibiotic resistance, virulence, and dissemination of P. aeruginosa.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Eduardo Leal Oliveira Camargo ◽  
Leandro Costa Nascimento ◽  
Marçal Soler ◽  
Marcela Mendes Salazar ◽  
Jorge Lepikson-Neto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document