scholarly journals Ectopic Expression of Tsi1 in Transgenic Hot Pepper Plants Enhances Host Resistance to Viral, Bacterial, and Oomycete Pathogens

2002 ◽  
Vol 15 (10) ◽  
pp. 983-989 ◽  
Author(s):  
Ryoung Shin ◽  
Jeong Mee Park ◽  
Jong-Min An ◽  
Kyung-Hee Paek

In many plants, including hot pepper plants, productivity is greatly affected by pathogen attack. We reported previously that tobacco stress-induced gene 1 (Tsi1) may play an important role in regulating stress responsive genes and pathogenesis-related (PR) genes. In this study, we demonstrated that overexpression of Tsi1 gene in transgenic hot pepper plants induced constitutive expression of several PR genes in the absence of stress or pathogen treatment. The transgenic hot pepper plants expressing Tsi1 exhibited resistance to Pepper mild mottle virus (PMMV) and Cucumber mosaic virus (CMV). Furthermore, these transgenic plants showed increased resistance to a bacterial pathogen, Xanthomonas campestris pv. vesicatoria and also an oomycete pathogen, Phytophthora capsici. These results suggested that ectopic expression of Tsi1 in transgenic hot pepper plants enhanced the resistance of the plants to various pathogens, including viruses, bacteria, and oomycete. These results suggest that using transcriptional regulatory protein genes may contribute to developing broad-spectrum resistance in crop plants.

2018 ◽  
Vol 19 (9) ◽  
pp. 2698 ◽  
Author(s):  
Ailian Qiu ◽  
Ji Wu ◽  
Yufen Lei ◽  
Yiting Cai ◽  
Song Wang ◽  
...  

GSK3-like kinases have been mainly implicated in the brassinosteroids (BR) pathway and, therefore, in plant growth, development, and responses to abiotic stresses; however, their roles in plant immunity remain poorly understood. Herein, we present evidence that CaSK23, a putative GSK3/SHAGGY-like kinase in pepper, acts as a negative regulator in pepper’s response to Ralstonia solanacearum (R. solanacearum) inoculation (RSI). Data from quantitative RT-PCR (qRT-PCR) showed that the constitutively-expressed CaSK23 in pepper leaves was down-regulated by RSI, as well as by exogenously-applied salicylic acid (SA) or methyl jasomonate (MeJA). Silencing of CaSK23 by virus-induced gene silencing (VIGS) decreased the susceptibility of pepper plants to RSI, coupled with up-regulation of the tested genes encoding SA-, JA-, and ethylene (ET)-dependent pathogenesis-related (PR) proteins. In contrast, ectopic overexpression (OE) of CaSK23 conferred a compromised resistance of tobacco plants to RSI, accompanied by down-regulation of the tested immunity-associated SA-, JA-, and ET-dependent PR genes. In addition, transient overexpression of CaSK23 in pepper plants consistently led to down-regulation of the tested SA-, JA-, and ET-dependent PR genes. We speculate that CaSK23 acts as a negative regulator in pepper immunity and its constitutive expression represses pepper immunity in the absence of pathogens. On the other hand, its decreased expression derepresses immunity when pepper plants are attacked by pathogens.


2010 ◽  
Vol 100 (8) ◽  
pp. 774-783 ◽  
Author(s):  
Mee Kyung Sang ◽  
Jeong-Gyu Kim ◽  
Ki Deok Kim

We investigated the effects of water extracts of composts (CWE) from commercial compost facilities for controlling root and foliar infection of pepper plants by Phytophthora capsici. Among 47 CWE tested, CWE from composts Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 significantly (P < 0.05) inhibited zoospore germination, germ tube elongation, mycelial growth, and population of P. capsici. All selected CWE significantly (P < 0.05) reduced the disease incidence and severity in the seedling and plant assays compared with the controls. However, there were no significant differences in zoospore germination, disease incidence, and disease severity between treatments of untreated, autoclaved, and filtered CWE. In addition, CWE significantly (P < 0.05) suppressed leaf infection of P. capsici through induced systemic resistance (ISR) in plants root-drenched with CWE. The tested CWE enhanced the expression of the pathogenesis-related genes, CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, or CaPR-10 as well as β-1,3-glucanase, chitinase, and peroxidase activities, which resulted in enhanced plant defense against P. capsici in pepper plants. Moreover, the CWE enhanced the chemical and structural defenses of the plants, including H2O2 generation in the leaves and lignin accumulation in the stems. The CWE could also suppress other fungal pathogens (Colletotrichum coccodes in pepper leaves and C. orbiculare in cucumber leaves) through ISR; however, it failed to inhibit other bacterial pathogens (Xanthomonas campestris pv. vesicatoria in pepper leaves and Pseudomonas syringae pv. lachrymans in cucumber leaves). These results suggest that a heat-stable chemical(s) in the CWE can suppress root and foliar infection by P. capsici in pepper plants. In addition, these suppressions might result from direct inhibition of development and population of P. capsici for root infection, as well as indirect inhibition of foliar infection through ISR with broad-spectrum protection.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 541 ◽  
Author(s):  
Jing-Hao Jin ◽  
Huai-Xia Zhang ◽  
Muhammad Ali ◽  
Ai-Min Wei ◽  
De-Xu Luo ◽  
...  

Phytophthora blight is one of the most destructive diseases of pepper (Capsicum annuum L.) globally. The APETALA2/Ethylene Responsive Factors (AP2/ERF) genes play a crucial role in plant response to biotic stresses but, to date, have not been studied in the context of Phytophthora resistance in pepper. Here, we documented potential roles for the pepper CaAP2/ERF064 gene in inducing cell death and conferring resistance to Phytophthora capsici (P. capsici) infection. Results revealed that the N-terminal, AP2 domain, and C-terminal of CaAP2/ERF064 protein is responsible for triggering cell death in Nicotiana benthamiana (N. benthamiana). Moreover, the transcription of CaAP2/ERF064 in plant is synergistically regulated by the Methyl-Jasmonate (MeJA) and ethephon (ET) signaling pathway. CaAP2/ERF064 was found to regulate the expression of CaBPR1, which is a pathogenesis-related (PR) gene of pepper. Furthermore, the silencing of CaAP2/ERF064 compromised the pepper plant resistance to P. capsici by reducing the transcript level of defense-related genes CaBPR1, CaPO2, and CaSAR82, while the ectopic expression of CaAP2/ERF064 in N. benthamiana plant elevated the expression level of NbPR1b and enhanced resistance to P. capsici. These results suggest that CaAP2/ERF064 could positively regulate the defense response against P. capsici by modulating the transcription of PR genes in the plant.


2021 ◽  
Vol 22 (7) ◽  
pp. 3690
Author(s):  
Veronique Jonckheere ◽  
Petra Van Damme

The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S. Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively. Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import. Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms. More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities. Finally, the yeast histone variant H2A.Z and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1169-1177
Author(s):  
Natalia E Abramova ◽  
Brian D Cohen ◽  
Odeniel Sertil ◽  
Rachna Kapoor ◽  
Kelvin J A Davies ◽  
...  

Abstract The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Δ allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.


2021 ◽  
Author(s):  
Rami Abou Zeinab ◽  
H Helena Wu ◽  
Yasser Abuetabh ◽  
Sarah Leng ◽  
Consolato Sergi ◽  
...  

Abstract Pirh2 is an E3 ligase belonging to the RING-H2 family and shown to bind, ubiquitinate and downregulate p73 tumor suppressor function without altering p73 protein levels. AIP4, an E3 ligase belonging to the HECT domain family, has been reported to be a negative regulatory protein that promotes p73 ubiquitination and degradation. Herein, we found that Pirh2 is a key regulator of AIP4 that inhibits p73 function. Pirh2 physically interacts with AIP4 and significantly downregulates AIP4 expression. This downregulation is shown to involve the ubiquitination of AIP4 by Pirh2. Importantly, we demonstrated that the ectopic expression of Pirh2 inhibits the AIP4–p73 negative regulatory pathway, which was restored when depleting endogenous Pirh2 utilizing Pirh2-siRNAs. We further observed that Pirh2 decreases AIP4-mediated p73 ubiquitination. At the translational level and specifically regarding p73 cell cycle arrest function, Pirh2 still ensures the arrest of p73-mediated G1 despite AIP4 expression. Our study reveals a novel link between two E3 ligases previously thought to be unrelated in regulating the same effector substrate, p73. These findings open a gateway to explain how E3 ligases differentiate between regulating multiple substrates that may belong to the same family of proteins, as it is the case for the p53 and p73 proteins.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4272-4281 ◽  
Author(s):  
Miranda Buitenhuis ◽  
Hanneke W. M. van Deutekom ◽  
Liesbeth P. Verhagen ◽  
Anders Castor ◽  
Sten Eirik W. Jacobsen ◽  
...  

Abstract Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially up-regulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34+ cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of β2-microglobulin-/- nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34+ cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopoiesis.


2007 ◽  
Vol 39 (4) ◽  
pp. 261-277 ◽  
Author(s):  
Pulak R Manna ◽  
Douglas M Stocco

AbstractTranscriptional regulation of the steroidogenic acute regulatory (StAR) protein gene by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP-response element (CRE; TGACGTCA) and is mediated by several sequence-specific transcription factors. We previously identified three CRE-like sites (within the −151/−1 bp cAMP-responsive region of the mouse StAR gene), of which the CRE2 site overlaps with an activator protein-1 (AP-1) motif (TGACTGA, designated as CRE2/AP-1) that can bind both CRE and AP-1 DNA-binding proteins. The present studies were aimed at exploring the functional crosstalk between CREB (CRE-binding protein) and cFos/cJun (AP-1 family members) on the CRE2/AP-1 element and its role in regulating transcription of the StAR gene. Using MA-10 mouse Leydig tumor cells, we demonstrate that the CRE and AP-1 families of proteins interact with the CRE2/AP-1 sequence. CREB, cFos, and cJun proteins were found to bind to the CRE2/AP-1 motif but not the CRE1 and CRE3 sites. Treatment with the cAMP analog (Bu)2cAMP augmented phosphorylation of CREB (Ser133), cFos (Thr325), and cJun (ser73). Chromatin immunoprecipitation studies revealed that the induction of CREB, cFos, and cJun by (Bu)2cAMP was correlated with protein–DNA interactions and recruitment of the coactivator CREB-binding protein (CBP) to the StAR promoter. EMSA studies employing CREB and cFos/cJun proteins demonstrated competition between these factors for binding to the CRE2/AP-1 motif. Transfection of cells containing the −151/−1 StAR reporter with CREB and cFos/cJun resulted in trans-repression of the StAR gene, an event tightly associated with CBP, demonstrating that both CREB and Fos/Jun compete with each other for binding with limited amounts of intracellular CBP. Overexpression of adenovirus E1A, which binds and inactivates CBP, markedly suppressed StAR gene expression. Ectopic expression of CBP eliminated the repression of the StAR gene by E1A and potentiated the activity of CREB and cFos/cJun on StAR promoter responsiveness. These findings identify molecular events involved in crosstalk between CREB and cFos/cJun, which confer both gain and loss of function on a single cis-element in fine-tuning of the regulatory events involved in transcription of the StAR gene.


Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 23-30 ◽  
Author(s):  
J. Wallin ◽  
H. Eibel ◽  
A. Neubuser ◽  
J. Wilting ◽  
H. Koseki ◽  
...  

Pax1 is a transcriptional regulatory protein expressed during mouse embryogenesis and has been shown to have an important function in vertebral column development. Expression of Pax1 mRNA in the embryonic thymus has been reported previously. Here we show that Pax1 protein expression in thymic epithelial cells can be detected throughout thymic development and in the adult. Expression starts in the early endodermal epithelium lining the foregut region and includes the epithelium of the third pharyngeal pouch, a structure giving rise to part of the thymus epithelium. In early stages of thymus development a large proportion of thymus cells expresses Pax1. With increasing age, the proportion of Pax1-expressing cells is reduced and in the adult mouse only a small fraction of cortical thymic stromal cells retains strong Pax1 expression. Expression of Pax1 in thymus epithelium is necessary for establishing the thymus microenvironment required for normal T cell maturation. Mutations in the Pax-1 gene in undulated mice affect not only the total size of the thymus but also the maturation of thymocytes. The number of thymocytes is reduced about 2- to 5-fold, affecting mainly the CD4+8+ immature and CD4+ mature thymocyte subsets. The expression levels of major thymocyte surface markers remains unchanged with the exception of Thy-1 which was found to be expressed at 3- to 4-fold higher levels.


Sign in / Sign up

Export Citation Format

Share Document