Combined Use of PGPR and Reduced Rates of Azoxystrobin to Improve Management of Sheath Blight of Rice

Plant Disease ◽  
2020 ◽  
Author(s):  
Xin-Gen (Shane) Zhou ◽  
K. Vijay Krishna Kumar ◽  
Linda W. Zhou ◽  
M. S. Reddy ◽  
Joseph W. Kloepper

Farmers heavily rely on the use of strobilurin fungicides to manage sheath blight (ShB) caused by Rhizoctonia solani AG1-IA, the most important disease in rice in the southern United States. Greenhouse and field studies were conducted to evaluate the potential use of plant growth-promoting rhizobacteria (PGPR) in combination with a reduced rate of azoxystrobin as a strategy to improve the current fungicide-reliant management. Of the nine antagonistic PGPR strains screened in the greenhouse, Bacillus subtilis strain MBI600 provided the most significant and consistent suppression of ShB. Efficacy of strain MBI600 was further evaluated at the concentrations of zero, 103, 106, 109, and 1011 CFU/ml alone or in combinations with zero, 17, 33, 50, 67, 83, and 100% of the recommended rate (0.16 kg a.i./ha) of azoxystrobin. Strain MBI600 applied at 106,109, and 1011 CFU/ml alone was effective in reducing ShB severity. Combinations of this strain at these rates with 33% or more of the recommended rate of azoxystrobin further reduced ShB severity. A dose response model defining the relationships between strain MBI600, azoxystrobin, and ShB severity was established. Estimates of the effective concentrations, EC50 and EC90, of strain MBI600 when applied in combination with 50% of the recommended rate of azoxystrobin were 104 and 109 CFU/ml, respectively. A field trial was conducted over 4 years to verify the efficacy of their combinations. Strain MBI600 alone, when applied at 109 CFU/ml at the boot stage, reduced ShB severity but did not significantly increase grain yields each year. Combination of strain MBI600 with azoxystrobin at the half-recommended rate improved efficacy of strain MBI600, reducing ShB severity to a level comparable to that of azoxystrobin applied at the full rate in all four years. The combined treatment also increased grain yield by 14 to 19% comparable to the fungicide applied at the full rate in 3 of 4 years. Combined use of PGPR strain MBI600 with a reduced rate of azoxystrobin can be a viable management option for control of ShB while allowing producers to use less fungicide on rice.

2020 ◽  
Vol 11 (2) ◽  
pp. 124-136 ◽  
Author(s):  
Sehrish Nawaz ◽  
Asghari Bano

Background: The present investigation aimed to evaluate the role of Plant Growth- Promoting Rhizobacteria (PGPR) and Ag-nanoparticles on two varieties (American variety, Poinsett 76 and Desi variety, Sialkot selection) of cucumber plants. Methods: Cucumber seeds prior to sowing, were inoculated with two strains of PGPR, Pseudomonas putida (KX574857) and Pseudomonas stutzeri (KX574858) at the rate of 106 cells/ml. Agnanoparticles (5ppm) were sprayed on the plant at early vegetative phase 27 d after sowing. Results: The proline, sugar, protein, phenolics, flavonoids, chlorophyll and carotenoids contents of leaves of plants and the activities of Phenylalanine Ammonia-Lyase (PAL), Superoxide Dismutase (SOD) and Catalase (CAT) were determined from leaves of plants at early vegetative phase. After 3 months of seeds sowing, Ag-nanoparticles enhanced the length of root but decreased the length of shoot and fresh weight of root and shoot as compared to control whereas, the leaf protein, proline, phenolics, flavonoids, chlorophyll b, total chlorophyll, sugar and Phenylalanine Ammonia-Lyase (PAL) activity of plants were increased significantly over control. Ag-nanoparticles also suppressed the effect of PGPR for root, shoot length but augmented the protein and phenolics contents of leaves of both the varieties. Conclusion: The combined treatment of Ag-nanoparticles and PGPR enhanced flavonoids content of leaves and the activities of PAL, SOD and CAT in leaves of plants over control. Agnanoparticles effectively increased the Phenylalanine Ammonia-Lyase (PAL), Catalase (CAT) and superoxide dismutase (SOD) activities in leaves of both the varieties. Pseudomonas putida may be used either alone or in combination with Ag-nanoparticles to enhance the antioxidant and defense enzyme activities. Hence, the plant can tolerate the diseases and stresses in a much better way with higher protein and phenolics content.


2019 ◽  
Vol 7 (1) ◽  
pp. 23
Author(s):  
Salamiah Salamiah ◽  
Muhammad Anton Ciptady ◽  
Chatimatun Nisa

<p>The productivity of onion in Indonesia is generally low due to fusarium wilt disease.  Biological controls can be applied using PGPR and Mycorrhizae. The purpose of this research was understand the interaction between PGPR and Mycorrhizal inoculation against fusarium wilt intensity as well as the growth and yield of onions. The isolation of <em>Fusarium oxysporum</em> f.sp <em>cepae</em> and PGPR, followed by the tests of PGPR inhibition ability, phosphate solvent and HCN compound productivity. The method used in the field was a completely randomized design (CRD) with 2 replications. Results showed that the combination of PGPR and mycorrhizae as a whole was unable to suppress <em>Fusarium</em> wilt disease, but had significant effect to postpone the incubation period (26,19 days after inoculation) and increase the growth and yield of onion compared to the onion plants infected with <em>Fusarium</em> but without the combined treatment of PGPR and mycorrhizae and the PGPR treatment and mycorrhizal treatment as single treatments; the application of mycorrhizae as the single factor had a very significant effect on the number of bulbs, but had no significant effect on the inhibition of fusarium wilt intensity as well as the growth and yield of onions.</p>


2008 ◽  
Vol 22 (3) ◽  
pp. 558-562 ◽  
Author(s):  
Brent A. Besler ◽  
W James Grichar ◽  
Scott A. Senseman ◽  
Robert G. Lemon ◽  
Todd A. Baughman

Field studies were conducted from 2000 to 2002 to evaluate yellow nutsedge control and peanut yield when diclosulam and imazapic were applied at the rate recommended by the manufacturer (1×) and reduced (1/2×) rates in single and twin-row planting patterns. In 2001, both diclosulam and imazapic applied to the twin-row pattern at the full and reduced rate provided better yellow nutsedge control than herbicide applications to the single-row spacing. Because of excessive rainfall in 2002, yellow nutsedge control was considerably reduced with all treatments. Imazapic at the full rate (71 g/ha) controlled yellow nutsedge 80 to 96% in the twin-row pattern, and 79 to 86% in single-row spacings. Yellow nutsedge control was less than 65% when diclosulam and imazapic were applied at the reduced rate. The twin-row configuration yielded higher than the single-row pattern when averaged across herbicides in 1 yr. All herbicide treatments enhanced yield relative to the nontreated control, except the reduced rate of imazapic in 2002. This study revealed that to fully maximize yellow nutsedge control, the full rate of either imazapic or diclosulam should be applied to peanuts planted in a single or twin-row spacing. However, these treatments may not necessarily increase peanut yields.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 560C-560
Author(s):  
Joseph W. Kloepper ◽  
M.S. Reddy ◽  
Choon-min Ryu ◽  
John F. Murphy

Use of beneficial rhizobacteria to enhance growth and induce systemic disease protection in transplants. Plant associated bacteria have been studied for the capacity to provide plant growth enhancement and biological disease control. “Rhizobacteria” are bacteria from the rhizosphere that have the capacity to colonize plant roots following introduction onto seeds or into soil. Effects of rhizobacteria on plants may be deleterious, neutral, or beneficial. Beneficial rhizobacteria are termed “PGPR—plant growth-promoting rhizobacteria.” In developmental studies aimed at reducing to practice the concept of induced systemic disease protection mediated by PGPR, we discovered that mixtures of PGPR and an organic amendment into the soilless media used to prepare tomato transplants resulted in highly significant and reproducible plant growth promotion. Time for development of transplants was typically reduced from 6 weeks for controls receiving industry standard fertility and growth regimes to 4 weeks for seedlings grown in soilless mix into which the PGPR had been incorporated. This marked growth promotion was also associated with systemic protection against pathogens. When transplants were inoculated with the tomato spot pathogen, significantly fewer lesions developed on plants grown in the biological system than on control plants. Similar effects on plant growth and systemic disease protection were seen with cucumber, bell pepper, and tobacco, suggesting that the benefits are not highly crop or cultivar specific. Results of recent field studies will be presented. We conclude that incorporation of PGPR into soilless mixes is a technologically useful and feasible way to deliver benefits to transplants.


2020 ◽  
Vol 37 (1) ◽  
pp. 21-37
Author(s):  
P.O. Akintokun ◽  
E. Ezaka ◽  
A.K. Akintokun ◽  
O.A. Oyedele

The use of Rhizobacteria as biofertilizer is on the increase due to the ability of some of the bacteria to solubilize some insoluble essential nutrients in the soil and produce phytohormones necessary for plant growth. The effectiveness of two plant growth promoting rhizobacteria (Bacillus cereus and Pseudomonas aeruginosa) in plant growth promotion at different concentrations of glyphosate were evaluated. Some agronomic parameters such as plant height, size of girth, number of leaves on the screen house and field were measured and recorded. The results of the effects of P. aeruginosa on the height of maize at different concentrations showed that the plants inoculated with the isolates and planted on the soil without glyphosate (control) recorded the highest height on the 2nd (34.9 cm), 4th (52.45 cm), 6th (61.17 cm) and 8th (66.25 cm) weeks after planting, when compared to those planted on the soil spiked with different concentrations of glyphosate. The effects of the isolates on the size of girth of maize on the soil spiked with different concentrations of glyphosate showed the highest girth size on the soil inoculated with P. aeruginosa eight weeks after planting (8 WAP) with a girth size of 2.0cm and least at 14.4 mg/ml of glyphosate with a girth size of 1.2 cm at 8 weeks after planting. Similar trend was observed on the soil inoculated with B. cereus (without glyphosate) with the highest girth in the 2nd and 4th WAP (1.02 and 1.42 cm, respectively). The results of our field studies showed no significant difference (P≤0.05) in the height and number of leaves of the maize at different treatments and time (weeks after planting). Similar trend was observed i n the yield of maize. This study has shown that these isolates can be useful as biofertilizers especially in the absence or at low concentration of glyphosate. Keywords: Rhizobacteria, maize, Inoculants, Plant-growth-promotion.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 774-784 ◽  
Author(s):  
Ni Xiang ◽  
Kathy S. Lawrence ◽  
Joseph W. Kloepper ◽  
Patricia A. Donald ◽  
John A. McInroy ◽  
...  

In the past decade, increased attention has been placed on biological control of plant-parasitic nematodes using various fungi and bacteria. The objectives of this study were to evaluate the potential of 662 plant growth-promoting rhizobacteria (PGPR) strains for mortality to Meloidogyne incognita J2 in vitro and for nematode management in greenhouse, microplot, and field trials. Results indicated that the mortality of M. incognita J2 by the PGPR strains ranged from 0 to 100% with an average of 39%. Among the PGPR strains examined, 212 of 662 strains (or 33%) caused significantly greater mortality percent of M. incognita J2 than the untreated control. Bacillus was the major genus initiating a greater mortality percentage when compared with the other genera. In subsequent trials, B. velezensis strain Bve2 reduced M. incognita eggs per gram of cotton root in the greenhouse trials at 45 days after planting (DAP) similarly to the commercial standards Abamectin and Clothianidin plus B. firmus I-1582. Bacillus mojavensis strain Bmo3, B. velezensis strain Bve2, B. subtilis subsp. subtilis strain Bsssu3, and the Mixture 2 (Abamectin + Bve2 + B. altitudinis strain Bal13) suppressed M. incognita eggs per gram of root in the microplot at 45 DAP. Bacillus velezensis strains Bve2 and Bve12 also increased seed-cotton yield in the microplot and field trials. Overall, results indicate that B. velezensis strains Bve2 and Bve12, B. mojavensis strain Bmo3, and Mixture 2 have potential to reduce M. incognita population density and to enhance growth of cotton when applied as in-furrow sprays at planting.


Sign in / Sign up

Export Citation Format

Share Document