scholarly journals Detection and Characterization of a Distinct Isolate of Tomato yellow fruit ring virus from Potato

Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1280-1287 ◽  
Author(s):  
A. R. Golnaraghi ◽  
R. Pourrahim ◽  
A. Ahoonmanesh ◽  
H. R. Zamani-Zadeh ◽  
Sh. Farzadfar

A distinct isolate (TY-PF36) of Tomato yellow fruit ring virus (TYFRV) was obtained from potato (Solanum tuberosum) in Iran. Chlorosis and necrotic spots on leaves associated with leaf and stem necrosis symptoms appear on the affected plants. Of 32 plant species and cultivars mechanically inoculated, 24 were susceptible to the virus isolate. The isolate strongly reacted with TYFRV antibodies in enzyme-linked immunosorbent assay (ELISA), but not with the specific antibodies of other tospoviruses tested. TYFRV-specific N gene primers described previously, however, failed to produce DNA fragments from the total RNA extracts of the infected plants in reverse transcription–polymerase chain reaction (RT-PCR). Nucleotide sequencing of the complete N gene and partial L gene of this isolate revealed considerable differences to those reported for TYFRV with identities ranging from 83.9 to 84.2% and 84.9 to 85.4%, respectively. Two specific primers were designed for detecting TY-PF36 using RT-PCR; TY-PF36 was detected in symptomatic field samples of potato, peanut, soybean, and two weed species, Datura metel and D. stramonium.

Author(s):  
K. Saratbabu ◽  
K. Vemana ◽  
A.K. Patibanda ◽  
B. Sreekanth ◽  
V. Srinivasa Rao

Background: Peanut stem necrosis disease (PSND) caused by Tobacco streak virus (TSV) is a major constraint for groundnut production in Andhra Pradesh (A.P.). However, studies on prevalence and spread of the disease confined to only few districts of A.P. with this background current study focused on incidence and spread of the disease in entire state of A.P. Further an isolate of TSV occurring in A.P. characterized on the basis of genetic features by comparing with other TSV isolates originated from different hosts and locations from world.Methods: Roving survey was conducted during kharif 2017-18 in groundnut growing districts of Andhra Pradesh (A.P.) for peanut stem necrosis disease incidence. Groundnut plants showing PSND symptoms were collected and tested with direct antigen coating enzyme linked immunosorbent assay (DAC-ELISA). Groundnut samples found positive by ELISA once again tested by reverse transcription polymerase chain reaction (RT-PCR). The representative TSV-GN-INDVP groundnut isolate from Prakasham district was maintained on cowpea seedlings by standard sap inoculation method in glasshouse for further molecular characterization. The Phylogenetic tree for coat protein (CP) gene was constructed using aligned sequences with 1000 bootstrap replicates following neighbor-joining phylogeny.Result: Thirty-eight (52.7%) of seventy-two groundnut samples collected from different locations in A.P were given positive reaction to TSV by DAC-ELISA. For the first time, PSND incidence observed in coastal districts (Krishna, Guntur, Sri Pottisriramulu Nellore, Prakasham) of A.P. Maximum PSND incidence recorded from Bathalapalli (22.2%) and the minimum incidence in Mulakalacheruvu (4.1%). The coat protein (CP) gene of TSV-GN-INDVP groundnut isolate was amplified by RT-PCR and it shared maximum per cent nucleotide identity (97.51-98.62%) with TSV isolates from groundnut and other different crops reported in India. All Indian isolates cluster together irrespective of crop and location based on the phylogenetic analysis.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


2002 ◽  
Vol 14 (4) ◽  
pp. 308-313 ◽  
Author(s):  
Mustafa Hasoksuz ◽  
Armando E. Hoet ◽  
Steven C. Loerch ◽  
Thomas E. Wittum ◽  
Paul R. Nielsen ◽  
...  

Recently, bovine coronavirus (BCV) has been isolated from new cattle arrivals to feedlots, but the association between respiratory and enteric infections with BCV in feedlot cattle remains uncertain. Fecal and nasal swab samples from 85 Ohio Agricultural Research and Development Center (OARDC) feedlot cattle averaging 7 months of age were collected at arrival (0) and at 4, 7, 14, and 21 days postarrival (DPA). An antigen capture enzyme-linked immunosorbent assay (ELISA) was used to detect concurrent shedding of BCV in fecal and nasal samples. All samples ELISA positive for BCV were matched with an equal number of BCV ELISA-negative samples and analyzed by reverse transcription-polymerase chain reaction (RT-PCR) of the N gene. Paired sera were collected at arrival and 21 DPA and tested for antibodies to BCV using an indirect ELISA. Information on clinical signs, treatments provided, and cattle weights were collected. The overall rates of BCV nasal and fecal shedding were 48% (41/85) and 53% (45/85) by ELISA and 84% (71/85) and 96% (82/85) by RT-PCR, respectively. The peak of BCV nasal and fecal shedding occurred at 4 DPA. Thirty-two cattle (38%) showed concurrent enteric and nasal shedding detected by both tests. Eleven percent of cattle had antibody titers against BCV at 0 DPA and 91% of cattle seroconverted to BCV by 21 DPA. The BCV fecal and nasal shedding detected by ELISA and RT-PCR were statistically correlated with ELISA antibody seroconversion ( P < 0.0001); however, BCV fecal and nasal shedding were not significantly related to clinical signs. Seroconversion to BCV was inversely related to average daily weight gains ( P < 0.06). Twenty-eight respiratory and 7 enteric BCV strains were isolated from nasal and fecal samples of 32 cattle in HRT-18 cell cultures. These findings confirm the presence of enteric and respiratory BCV infections in feedlot calves. Further studies are needed to elucidate the differences between enteric and respiratory strains of BCV and their role in the bovine respiratory disease complex of feedlot cattle.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 84-88 ◽  
Author(s):  
R. H. Li ◽  
G. C. Wisler ◽  
H.-Y. Liu ◽  
J. E. Duffus

A polyclonal antiserum prepared against purified virions of tomato infectious chlorosis virus (TICV) was used to evaluate serological tests for its detection, to determine its distribution in infected plants, to study relationships among isolates of this virus, and to detect it in field samples. A cRNA probe representing TICV RNA 1 and RNA 2 was used in dot blot hybridization tests. A reverse transcriptase-polymerase chain reaction (RT-PCR) assay was also developed for detection of TICV isolates. The comparative study of these four techniques indicated that RT-PCR was 100-fold more sensitive than enzyme-linked immunosorbent assay (ELISA), Western blot, and dot blot hybridization assays for TICV detection. TICV was detected in leaf, stem, flower, and root tissues of the infected tomato plants. However, the virus was not uniformly distributed throughout the infected tomato plants, and the highest viral concentration was observed in fully developed young tomato leaves at the onset of yellowing symptoms. The virus was detected by indirect ELISA, Western blot, dot blot hybridization, and RT-PCR assays in laboratory-infected tomato, tomatillo, potato, and Nicotiana clevelandii and in naturally infected tomato, petunia, and Ranunculus sp. plants obtained from commercial sources. These tests indicate that there are apparently no detectable serological or nucleic acid differences among four TICV isolates obtained from Orange and Yolo Counties of California or from North Carolina or Italy.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 526-526 ◽  
Author(s):  
S. Adkins ◽  
C. A. Baker

Desert rose (Adenium obesum (Forssk.) Roem. & Schult), a member of the family Apocynaceae, is characterized by fleshy stems and leaves and colorful flowers. This exotic ornamental, originally from southeast Africa, is propagated vegetatively and is a perennial in warm climates. Virus-like foliar symptoms, including chlorotic ring and line patterns, were observed in the fall of 2004 on one of five stock plants being maintained in a greenhouse in Fort Pierce, FL. Inclusion body morphology suggested the presence of a Tospovirus in the symptomatic plant, and Tomato spotted wilt virus (TSWV) was specifically identified in this plant using a commercially available double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). TSWV was not detected in symptomless desert rose plants nor was Impatiens necrotic spot virus detected in any of the plants using DAS-ELISA. Graft transmission of TSWV to other desert rose plants was successful. Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA of the symptomatic plant confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579-bp region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. No product was amplified from symptomless plants. Since these 3-year-old plants were grown on-site from seed and only expressed symptoms 2 months following damage to the greenhouse by hurricanes Frances and Jeanne, it is likely that viruliferous thrips were introduced from local vegetable or ornamental production areas during or following the storms. To our knowledge, this is the first report of TSWV infection of desert rose in Florida, although TSWV was observed in this plant in Europe approximately 10 years ago (3,4). Because of the wide distribution of TSWV in the United States, the increasing popularity of desert rose, and the recent identification of Cucumber mosaic virus in this host (2), attention to sanitation and insect vector management is merited during desert rose propagation and production. References: (1) S. Adkins and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) J. Mertelik et al. Acta Hortic. 432:368, 1996. (4) J. Th. J. Verhoeven and J. W. Roenhorst. Acta Hortic. 377:175, 1994.


2020 ◽  
Author(s):  
Umer Seid Geletu ◽  
Fufa Dawo Bari ◽  
Munera Ahmednur Usmael ◽  
Asamino Tesfaye

Abstract Background: Coronavirus and Rotavirus are most commonly associated etiologies for calves’ diarrhea resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by coronavirus and rotavirus in calves in Ethiopia are inadequately understood. A cross sectional study was conducted with the aim of isolation and molecular characterization of coronavirus and rotavirus from calves in central part of Oromia (Bishoftu, Sebata, Holeta and Addis Ababa), Ethiopia from November 2018 to May 2019. The four study areas were purposively selected and fecal samples were collected by simple random sampling for diagnosis of coronavirus and rotavirus infection by using antigen detection Enzyme linked immunosorbent assay (Ag-ELISA) kit. In addition, this study was carried out to have insight in prevalence and associated risk factors of coronavirus and rotavirus infection in calves. Result: During the study 83 diarrheic and 162 non-diarrheic fecal samples collected from calves less than 4 weeks of age were screened for coronavirus and rotavirus. Of the 83 diarrheic samples, 1 sample (1.2%) was positive for coronavirus antigen (Ag) and 6 samples (7.2%) were found to be positive for rotavirus antigen (Ag) by Ag-ELISA. All the non-diarrheic samples were negative for both coronavirus and rotavirus Ag. The overall prevalence of coronavirus and rotavirus infection in calves were estimated as 0.4% (1/245) and 2.45% (6/245) respectively. All samples (7) of ELISA test positive of both coronavirus and rotavirus were propagated in Madin Darby bovine kidney cells (MDBK). After 3 subsequent passages, progressive cytopathic effect (CPE) i.e. rounding, detachment as well as destruction of mono-layer cell of five sample (1 sample of coronavirus and 4 sample of rotavirus) (71.4%) were observed. At the molecular stage, reverse transcriptase polymerase chain reaction (RT-PCR) technique was used to determine the presence of coronavirus and rotavirus nucleic acid by using specific primers. The 5 samples that were coronavirus and rotavirus antigen positive by ELISA and develop CPE on cell culture were also positive on RT-PCR technique. Infection prevalence peaked have been obtained at 1st and 2nd weeks of age in male calves. Conclusion: Diarrheal disease caused by coronavirus and rotavirus has a great health problem in calves that interrupts production benefits with reduced weight gain and increased mortality, and its potential for zoonotic spread. So the present findings show coronavirus and rotavirus infection in calves in Ethiopia that needs to be addressed by practicing early colostrums feeding in newborn calves, using vaccine, or improving livestock management.


2012 ◽  
Vol 24 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Dolores Buitrago ◽  
Ana Rocha ◽  
Cristina Tena-Tomás ◽  
Marta Vigo ◽  
Montserrat Agüero ◽  
...  

In September 2010, an outbreak of disease in 2 wild bird species (red-legged partridge, Alectoris rufa; ring-necked pheasant, Phasianus colchicus) occurred in southern Spain. Bagaza virus (BAGV) was identified as the etiological agent of the outbreak. BAGV had only been reported before in Western Africa (Central African Republic, Senegal) and in India. The first occurrence of BAGV in Spain stimulated a demand for rapid, reliable, and efficacious diagnostic methods to facilitate the surveillance of this disease in the field. This report describes a real-time reverse transcription polymerase chain reaction (RT-PCR) method based on a commercial 5’-Taq nuclease-3’ minor groove binder DNA probe and primers targeting the Bagaza NS5 gene. The method allowed the detection of BAGV with a high sensitivity, whereas other closely related flaviviruses ( Usutu virus, West Nile virus, and Japanese encephalitis virus) were not detected. The assay was evaluated using field samples of red-legged partridges dead during the outbreak ( n = 11), as well as samples collected from partridges during surveillance programs ( n = 81). The results were compared to those obtained with a pan-flaviviral hemi-nested RT-PCR followed by nucleotide sequencing, which was employed originally to identify the virus involved in the outbreak. The results obtained with both techniques were 100% matching, indicating that the newly developed real-time RT-PCR is a valid technique for BAGV genome detection, useful in both diagnosis and surveillance studies.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 440-445 ◽  
Author(s):  
C. C. Chen ◽  
T. C. Chen ◽  
Y. H. Lin ◽  
S. D. Yeh ◽  
H. T. Hsu

A new tospovirus, Calla lily chlorotic spot virus (CCSV), was isolated from calla lilies (Zantedeschia spp.) in Taiwan. Chlorotic spots, ranging from light green to yellow, appear on the middle leaves of the affected plants. Virions measuring 75 to 105 nm, similar in size to tospovirus particles, were present in crude extracts and ultrathin sections of diseased leaves. Of 35 plant species inoculated mechanically, 24, including wax gourd (Benincasa hispida) and zucchini squash (Cucurbita pepo), were susceptible to the virus. CCSV was transmitted from infected wax gourd by Thrips palmi to healthy wax gourd and zucchini squash. The virus was weakly related to Watermelon silver mottle virus (WSMoV) in enzyme-linked immunosorbent assay (ELISA) and western blot tests. WSMoV-specific N gene primers, however, failed to produce DNA fragments from total RNA extracts of CCSV-infected plants in reverse transcription-polymerase chain reaction (RT-PCR). Results of RT-PCR show that the conserved regions of the L genes of tospoviruses are present in CCSV.


1998 ◽  
Vol 180 (6) ◽  
pp. 1533-1539 ◽  
Author(s):  
John S. Swartley ◽  
Li-Jun Liu ◽  
Yoon K. Miller ◽  
Larry E. Martin ◽  
Srilatha Edupuganti ◽  
...  

ABSTRACT The (α1→6)-linkedN-acetyl-d-mannosamine-1-phosphate meningococcal capsule of serogroup A Neisseria meningitidisis biochemically distinct from the sialic acid-containing capsules produced by other disease-associated meningococcal serogroups (e.g., B, C, Y, and W-135). We defined the genetic cassette responsible for expression of the serogroup A capsule. The cassette comprised a 4,701-bp nucleotide sequence located between the outer membrane capsule transporter gene, ctrA, and galE, encoding the UDP-glucose-4-epimerase. Four open reading frames (ORFs) not found in the genomes of the other meningococcal serogroups were identified. The first serogroup A ORF was separated from ctrA by a 218-bp intergenic region. Reverse transcriptase (RT) PCR and primer extension studies of serogroup A mRNA showed that all four ORFs were cotranscribed in the opposite orientation to ctrA and that transcription of the ORFs was initiated from the intergenic region by a ς-70-type promoter that overlapped the ctrA promoter. The first ORF exhibited 58% amino acid identity with the UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) 2-epimerase of Escherichia coli, which is responsible for the conversion of UDP-GlcNAc into UDP-N-acetyl-d-mannosamine. Polar or nonpolar mutagenesis of each of the ORFs resulted in an abrogation of serogroup A capsule production as determined by colony immunoblots and enzyme-linked immunosorbent assay. Replacement of the serogroup A biosynthetic gene cassette with a serogroup B cassette by transformation resulted in capsule switching from a serogroup A capsule to a serogroup B capsule. These data indicate that assembly of the serogroup A capsule likely begins with monomeric UDP-GlcNAc and requires proteins encoded by three other genes found in the serogroup A N. meningitidis-specific operon located betweenctrA and galE.


Plant Disease ◽  
2001 ◽  
Vol 85 (10) ◽  
pp. 1123-1123 ◽  
Author(s):  
A. W. Wangai ◽  
B. Mandal ◽  
H. R. Pappu ◽  
S. Kilonzo

Tomato spotted wilt virus (TSWV) of the genus Tospovirus, family Bunyaviridae (1), causes an economically important virus disease in tomato in several parts of the world. The virus has a wide host range that includes numerous crops and weeds and is transmitted by at least seven species of thrips. Tomato crops in the Subukia, Bahati, and Kabazi areas of the Nakuru District in Kenya were affected by a disease suggestive of TSWV infection during the November 1999 to March 2000 tomato-growing season. Farmers reported up to 80% losses of their potential yields. Characteristic symptoms were noticed on fruits, especially when they were green. Distinct concentric rings on fruits, which later turned into brown, uneven ripening, were the most visible symptoms. Foliage did not develop pronounced symptoms, but mild bronzing was observed in a few cultivars. However, foliage senesced prematurely, starting with older leaves. Foliar symptoms were mistaken for blight infection, and as a result, excessive fungicides were applied that failed to manage the disease. To test for TSWV infection, tomato leaf samples collected from the fields were tested initially with a TSWV test kit (HortiTech, Horticulture Research International, Wellesbourne, UK), and the results were confirmed by double-antibody sandwich-enzyme-linked immunosorbent assay with antibodies from Agdia Inc. (Elkhart, IN). Further molecular characterization was done using reverse transcription-polymerase chain reaction (RT-PCR). Total RNA was extracted from symptomatic leaves of tomato cv. Money Maker using the RNeasy mini kit (Qiagen Inc., Valencia, CA). Using primers 5′ TTAAGC AAGTTCTGTGAG 3′ and 5′ ATGTCTAAGGTTAAGCTC 3′ specific to the nucleoprotein (N) gene of TSWV, the N gene was amplified by RT-PCR (2). A 777-bp product of the expected size was obtained from symptomatic plants, whereas no amplification was obtained from noninfected tomato. The PCR product was cloned into pGEM-T Easy (Promega, Madison, WI) and sequenced. A search of GenBank revealed a sequence identity of 95 to 99% with the N genes of known TSWV isolates. To our knowledge, this is the first report TSWV infection of tomato in Kenya. Considering its wide host range, future surveys should be directed toward estimating its incidence in tomato and other TSWV-susceptible crops, such as Irish potatoes, pepper, peanut (groundnut), beans, and a wide variety of ornamental cut flowers in Kenya. References: (1) J. W. Moyer. Tospoviruses (Bunyaviridae). Pages 1803–1807 in: Encyclopedia of Virology. A. Granoff and R. G. Webster, eds. Academic Press, San Diego, CA, 1999. (2) Jain et al. Plant Dis. 82:900, 1998.


Sign in / Sign up

Export Citation Format

Share Document