scholarly journals First Report of Alfalfa mosaic virus in Lavandula officinalis

Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 908-908 ◽  
Author(s):  
Ll. Martínez-Priego ◽  
M. C. Córdoba ◽  
C. Jordá

For several years, in ornamental nurseries in the Mediterranean area of Spain, stunting and yellow leaf spotting have been observed in young plants of Lavandula officinalis. Symptoms eventually disappeared as the plants matured. During the summer of 2003, the number of plantlets affected and the intensity of symptoms increased significantly. Symptomatic plants tested positive using enzyme-linked immunosorbent assay (ELISA) (Phyto-Diagnostics, INRA, France) for the presence of Alfalfa mosaic virus (AMV). ELISA results were verified using reverse transcription-polymerase chain reaction (RT-PCR). Total RNA extracts from symptomatic plants were analyzed using primers designed specifically for the coat protein region of AMV utilizing sequence data from GenBank Accession No. AF215664: AMVcoat-F: GT GGT GGG AAA GCT GGT AAA and AMVcoat-R: CAC CCA GTG GAG GTC AGC ATT. The thermocycling schedule was as follows: reverse transcriptase step at 50°C for 30 min, first PCR cycle at 94°C for 2 min, 35 cycles each of 30 s at 94°C, 30 s at 54°C, 30 s at 72°C, followed by a final extension at 72°C for 10 min. A 700-pb PCR product of the expected size was obtained from plants that were positive for AMV using ELISA. The two systems provide for rapid detection of AMV in L. officinalis. A regular screening program will assist in providing virus-free plants to ornamental nurseries. These results demonstrate the presence of AMV in L. officinalis. Alfalfa (Medicago sativa L.) is a typical source of AMV. However, because the nurseries where L. officinalis is grown are not in the vicinity of alfalfa fields, we suggest the source of the infection originated in the propagation material. AMV has currently been reported in L. officinalis only in Italy and France (1). To our knowledge, this is the first report of AMV in L. officinalis in Spain. Reference: (1): A. Garibaldi et al. Ed. Edagricole-Edisioni Agricole della Calderini s.r.l., Bologna, 2000.

Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 99-99 ◽  
Author(s):  
M. G. Bellardi ◽  
C. Rubies-Autonell ◽  
A. Bianchi

During the summers of 2001 and 2002, Japanese peony (Paeonia albiflora Pall., synonym P. lactiflora, family Paeoniaceae) plants, cultivated in the Botanical Garden of the University of Parma (Emilia Romagna Region of northern Italy), were found affected by a disease with virus-like symptoms. The oldest leaves showed yellow, mosaic, oak-like arabesques and line-patterns; the remaining leaves and pink flowers were symptomless. A disease of peony, known as peony ring spot disease, has been reported worldwide (Europe, United States, Japan, and New Zeland) for several years and is associated with strains of Tobacco rattle virus (TRV) (1). Electron microscopic observations of peony leaf sap (leaf dip preparations stained with uranyl acetate and phospotungstic acid) did not show the presence of any rod-shaped virus particles, including TRV. Mechanical inoculations of sap from symptomatic leaves caused symptoms typical of Alfalfa mosaic virus (AMV) on Chenopodium amaranticolor Coste & Reyn. (local chlorotic and necrotic lesions and systemic periveinal line-patterns), Ocimum basilicum L. (yellow mosaic), Vigna unguiculata (L.) Walp. (red, local necrotic lesions), and Nicotiana tabacum cv. Samsun (white, necrotic lesions, systemic leaf malformation, and mosaic), and N. glutinosa L. (systemic leaf variegation). Symptomatic leaves of peony and infected herbaceous plants were analyzed for virus presence by protein A sandwich enzyme-linked immunosorbent assay (PAS-ELISA). The polyclonal antisera tested were those to AMV (PVAS 92, American Type Culture Collection, Manassas, VA), AMV-Vinca minor L. (DiSTA collection, Italy), and the nepoviruses Strawberry latent ringspot virus, Tomato ringspot virus, and Cherry leaf roll virus. PAS-ELISA revealed only the presence of AMV. Immunoelectron microscopy and gold-labeled decoration confirmed the identity of the virus. In 2001, five symptomless peony plants (provided by a commercial grower and previously analyzed for AMV and TRV presence) were grafted with shoots from peony showing yellow mosaic on the leaves and maintained in a greenhouse under aphid-proof cage. During the summer of 2002, one of the grafted plants showed a mild mosaic on the leaves; PAS-ELISA revealed this peony was infected by AMV. To our knowledge, this is the first report of AMV in peony. Reference: (1) Chang et al. Ann. Phytopathol. Soc. Jpn. 42:325, 1976.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1181-1182 ◽  
Author(s):  
A. G. Gillaspie ◽  
G. Pio-Ribeiro ◽  
G. P. Andrade ◽  
H. R. Pappu

The Brazilian strain of Cowpea aphid-borne mosaic virus (CABMV) is a severe pathogen in peanut and a significant problem when distributing germ plasm to other countries. The virus is seedborne at approximately 0.15% in peanut, depending upon the cultivar, and its detection in seed lots would strengthen quarantine programs. Utilizing 3′ sequence data (GenBank Accession #AF241233), primers were designed from the coat protein region and evaluated by reverse transcription-polymerase chain reaction (RT-PCR). Use of the forward primer 5′-CGCTCAAACCCATTGTAGAA-3′ and reverse primer 5′-TATTGCTTCCCTTGCTCTTTC-3′ yielded a 221-bp product. Extracts of thick seed slices and a sample size of 12 to 25 seed showed no significant advantage of RT-PCR over enzyme-linked immunosorbent assay (ELISA) in tests of large seed lots. However, RT-PCR detected more virus in seed than in the number of infected seedlings normally arising in germination tests. Also, RT-PCR was extremely sensitive and detected 1 infected leaf among 99 healthy leaves. In contrast, ELISA detected only one infected leaf among nine healthy leaves.


2006 ◽  
Vol 96 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
H. Xu ◽  
J. Nie

Alfalfa mosaic virus (AMV) was detected in potato fields in several provinces in Canada and characterized by bioassay, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction (RT-PCR). The identity of eight Canadian potato AMV isolates was confirmed by sequence analysis of their coat protein (CP) gene. Sequence and phylogenetic analysis indicated that these eight AMV potato isolates fell into one strain group, whereas a slight difference between Ca175 and the other Canadian AMV isolates was revealed. The Canadian AMV isolates, except Ca175, clustered together among other strains based on alignment of the CP gene sequence. To detect the virus, a pair of primers, AMV-F and AMV-R, specific to the AMV CP gene, was designed based on the nucleotide sequence alignment of known AMV strains. Evaluations showed that RT-PCR using this primer set was specific and sensitive for detecting AMV in potato leaf and tuber samples. AMV RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 tubers. Restriction analysis of PCR amplicons with SacI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by restriction fragment length polymorphism analysis may be a useful approach for screening potato samples on a large scale for the presence of AMV.


2018 ◽  
Vol 100 (3) ◽  
pp. 607-607 ◽  
Author(s):  
Pal Salamon ◽  
Anita Sos-Hegedus ◽  
Peter Gyula ◽  
Gyorgy Szittya

Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1457-1457 ◽  
Author(s):  
N. Sudhakar ◽  
D. Nagendra-Prasad ◽  
N. Mohan ◽  
K. Murugesan

During a survey in January 2006 near Salem in Tamil Nadu (south India), Cucumber mosaic virus was observed infecting tomatoes with an incidence of more than 70%. Plants exhibiting severe mosaic, leaf puckering, and stunted growth were collected, and the virus was identified using diagnostic hosts, evaluation of physical properties of the virus, compound enzyme-linked immunosorbent assay (ELISA) (ELISA Lab, Washington State University, Prosser), reverse-transcription polymerase chain reaction (RT-PCR), and restriction fragment length polymorphism analysis (DSMZ, S. Winter, Germany). To determine the specific CMV subgroup, total RNA was extracted from 50 infected leaf samples using the RNeasy plant RNA isolation kit (Qiagen, Hilden, Germany) and tested for the presence of the complete CMV coat protein gene using specific primers as described by Rizos et al. (1). A fragment of the coat protein was amplified and subsequently digested with MspI to reveal a pattern of two fragments (336 and 538 bp), indicating CMV subgroup II. No evidence of mixed infection with CMV subgroup I was obtained when CMV isolates representing subgroups I (PV-0419) and II (PV-0420), available at the DSMZ Plant Virus Collection, were used as controls. Only CMV subgroup I has been found to predominantly infect tomato in the Indian subcontinent, although Verma et al. (2) identified CMV subgroup II infecting Pelargonium spp., an ornamental plant. To our knowledge, this is the first report of CMV subgroup II infecting tomato crops in India. References: (1) H. Rizos et al. J. Gen. Virol. 73:2099, 1992. (2) N. Verma et al. J. Biol. Sci. 31:47, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ahmed Sabra ◽  
Mohammed Ali Al Saleh ◽  
I. M. Alshahwan ◽  
Mahmoud A. Amer

Tomato (Solanum lycopersicum L.) is the most economically important member of family Solanaceae and cultivated worldwide and one of the most important crops in Saudi Arabia. The aim of this study is screening of the most common viruses in Riyadh region and identified the presence of tomato brown rugose fruit virus (ToBRFV) in Saudi Arabia. In January 2021, unusual fruit and leaf symptoms were observed in several greenhouses cultivating tomatoes commercially in Riyadh Region, Saudi Arabia. Fruit symptoms showed irregular brown spots, deformation, and yellowing spots which render the fruits non-marketable, while the leaf symptoms included mottling, mosaic with dark green wrinkled and narrowing. These plants presented the symptoms similar to those described in other studies (Salem et al., 2015, Luria et al., 2017). A total 45 Symptomatic leaf samples were collected and tested serologically against suspected important tomato viruses including: tomato chlorosis virus, tomato spotted wilt virus, tomato yellow leaf curl virus, tomato chlorotic spot virus, tomato aspermy virus, tomato bushy stunt virus, tomato black ring virus, tomato ringspot virus, tomato mosaic virus, pepino mosaic virus and ToBRFV using Enzyme linked immunosorbent assay (ELISA) test (LOEWE®, Biochemica, Germany), according to the manufacturers' instructions. The obtained results showed that 84.4% (38/45) of symptomatic tomato samples were infected with at least one of the detected viruses. The obtained results showed that 55.5% (25/45) of symptomatic tomato samples were found positive to ToBRFV, three out of 25 samples (12%) were singly infected, however 22 out of 45 (48.8%) had mixed infection between ToBRFV and with at least one of tested viruses. A sample with a single infection of ToBRFV was mechanically inoculated into different host range including: Chenopodium amaranticolor, C. quinoa, C. album, C. glaucum, Nicotiana glutinosa, N. benthamiana, N. tabacum, N. occidentalis, Gomphrena globosa, Datura stramonium, Solanum lycopersicum, S. nigrum, petunia hybrida and symptoms were observed weekly and the systemic presence of the ToBRFV was confirmed by RT-PCR and partial nucleotide sequence. A Total RNA was extracted from DAS-ELISA positive samples using Thermo Scientific GeneJET Plant RNA Purification Mini Kit. Reverse transcription-Polymerase chain reaction (RT-PCR) was carried out using specific primers F-3666 (5´-ATGGTACGAACGGCGGCAG-3´) and R-4718 (5´-CAATCCTTGATGTG TTTAGCAC-3´) which amplified a fragment of 1052 bp of Open Reading Frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp). (Luria et al. 2017). RT-PCR products were analyzed using 1.5 % agarose gel electrophoresis. RT-PCR products were sequenced in both directions by Macrogen Inc. Seoul, South Korea. Partial nucleotide sequences obtained from selected samples were submitted to GenBank and assigned the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities ranged between 98.99 % to 99.50 % among them and 98.87-99.87 % identity with ToBRFV isolates from Palestine (MK881101 and MN013187), Turkey (MK888980, MT118666, MN065184, and MT107885), United Kingdom (MN182533), Egypt (MN882030 and MN882031), Jordan (KT383474), USA (MT002973), Mexico (MK273183 and MK273190), Canada (MN549395) and Netherlands (MN882017, MN882018, MN882042, MN882023, MN882024, and MN882045). To our knowledge, this is the first report of occurrence of ToBRFV infecting tomato in Saudi Arabia which suggests its likely introduction by commercial seeds from countries reported this virus and spread in greenhouses through mechanical means. The author(s) declare no conflict of interest. Keywords: Tomato brown rugose fruit virus, tomato, ELISA, RT-PCR, Saudi Arabia References: Luria N, et al., 2017. PLoS ONE 12(1): 1-19. Salem N, et al., 2015. Archives of Virology 161(2): 503-506. Fig. 1. Symptoms caused by ToBRFV showing irregular brown spots, deformation, yellowing spots on fruits (A, B, C) and bubbling and mottling, mosaic with dark green wrinkled and narrowing on leaf (D).


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1331-1331 ◽  
Author(s):  
J. R. Fisher ◽  
M.-C. Sanchez-Cuevas ◽  
S. T. Nameth ◽  
V. L. Woods ◽  
C. W. Ellett

Eryngium amethystinum (amethyst sea holly) is a herbaceous plant commonly grown as an ornamental perennial in U.S.D.A. hardiness zones 3 to 8. The plant thrives in dry areas with infertile soils and the flowers are often used in dried floral arrangements. Canna spp. (Canna), soft perennials (U.S.D.A. zone 9 and above), are becoming popular flowering plants because of their bright flowers and spectacular foliage. There are a variety of species that fall under the heading Canna spp., of which the most popular are C. glauca, C. indica, C. edulis, and C. iridiflora. Hybrids of Aquilegia (garden columbine), a hardy perennial (U.S.D.A. zones 3 to 9), flower in late spring through early summer. The genus is made up of a wide variety of cultivars. E. amethystinum exhibiting severe mosaic, yellowing, and stunting, along with Canna plants exhibiting severe stunting, chlorotic and distorted foliage, and mosaic, and garden columbine plants exhibiting stunting, leaf curl, chlorosis, and mosaic, collected from commercial plantings throughout the central Ohio area, were analyzed for the presence of virus infection with viral-associated, double-stranded RNA (dsRNA) analysis. dsRNA analysis resulted in a banding profile typical of that seen with members of the cucumovirus family of plant viruses. Plants positive for cucumovurus-like dsRNA were tested with a direct antibody sandwich enzyme-linked immunosorbent assay (ELISA). ELISA results confirmed the presence of cucumber mosaic virus (CMV) in all symptomatic plants tested. No evidence of dsRNA or CMV was found in any of the asymptomatic plants tested. Because all of these hosts are common in the perennial garden, they could serve as a reservoir host of CMV for other plants in the garden. This is the first report of CMV in E. amethystinum, Canna spp., and Aquilegia hybrids in Ohio.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 200-200 ◽  
Author(s):  
M. Bousalem ◽  
S. Dallot

Naturally infected Dioscorea alata plants showing mild mosaic were collected in 1998 on the island of Martinique in the Caribbean. Isolates were first screened by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies raised against Yam mosaic virus (YMV) and antigen-coated plate ELISA with universal potyvirus monoclonal antibodies (Agdia, Elkhart, IN). A positive reaction was obtained only with the universal potyvirus antiserum. Immunocapture reverse-transcriptase polymerase chain reaction was performed for specific detection of Yam mild mosaic virus (YMMV [3]) and YMV. A product with the predicted size of 249 bp was obtained with YMMV primers. YMMV is a recently recognized distinct potyvirus infecting D. alata in West Africa and the South Pacific (2–4). It was originally described as Yam virus I and is synonymous with Dioscorea alata virus (4). To characterize the YMMV Martinique isolate, total RNA was extracted, and universal potyvirus degenerate primers (1) were used to amplify a 700-bp fragment that included the core and C-terminal region of the coat protein (CP) and 3′ untranslated region (3′UTR). Sequence information generated (EMBL AJ250336) from the cloned fragment was compared with sequences of other yam potyviruses. Sequence comparisons of the partial CP (453 nt) showed a similarity of 94.6% (amino acids [aa]) with the YMMV isolate from Papua New Guinea (EMBL AB022424 [2]); 72.2% (aa) with the Japanese yam mosaic virus (JYMV) isolate (EMBL AB016500); and 67 to 73% (aa) with 27 YMV isolates. These sequences are most diverse in the 3′UTR, which showed a similarity of 72.8% with the YMMV Papua New Guinea isolate, 30% with the JYMV isolate, and 26% with the YMV isolates. These results confirm, as previously shown by S. Fuji et al. (2), that YMMV should be classified as a new potyvirus of yam. This is the first report of the natural occurrence of YMMV in the Caribbean. References: (1) Colinet et al. Phytopathology 84:65, 1994. (2) S. Fuji et al. Arch Virol. 144:1415, 1999. (3) R. A. Munford and S. E. Seal. J. Virol. Methods 69:73, 1997. (4) B. O. Odu et al. Ann. Appl. Biol. 134:65, 1999.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1162-1162 ◽  
Author(s):  
E. Segundo ◽  
F. M. Gil-Salas ◽  
D. Janssen ◽  
G. Martin ◽  
I. M. Cuadrado ◽  
...  

Common bean (Phaseolus vulgaris L.) is grown on approximately 1,500 ha in commercial greenhouses and is of major economic importance in the Souss-Massa Region, Agadir, Morocco. Since October 2003, symptoms resembling a viral disease, consisting of pod mosaic and distortion and mild to severe mosaic in leaves, have been observed on bean plants in several greenhouses. Mechanical inoculation with symptomatic leaf extracts produced necrotic local lesions on P. vulgaris ‘Pinto’ and systemic symptoms similar to those observed in the naturally infected bean plants P. vulgaris ‘Donna’ (five plants per cultivar). Inoculated and naturally infected samples reacted positively using a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to Southern bean mosaic virus (SBMV) (DSMZ, Braunschweig, Germany), a member of the Sobemovirus genus that is transmitted by contact, soil, beetles, and seeds (1). Virions purified from a naturally infected ‘Donna’ plant contained a 30-kDa polypeptide that reacted positively using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis with SBMV antiserum (DSMZ). Reverse transcription-polymerase chain reaction amplification with SMBV primers as described by Verhoeven et al. (2) produced an expected 870-bp band. The amplicon was cloned, sequenced (GenBank Accession No. AJ748276), and compared to those isolates available in GenBank and had a nucleotide sequence identity of 87% and a derived amino acid sequence identity of 95% with an SBMV isolate from Spain (2). During a survey in different areas of the Souss-Massa Region, 20 symptomatic leaf and pod samples were randomly collected from 12 greenhouses (50 ha) where significant commercial losses were suffered because of this virus disease, and all samples were positive using DAS-ELISA for SBMV. To our knowledge, this is the first report of SBMV in Morocco. References: (1) J. H. Tremaine and R. I. Hamilton. Southern bean mosaic virus. No. 274 in: Descriptions of Plant Viruses. CMI/AAB, Kew, Surrey, England, 1983. (2) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 109:935, 2003.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1132-1132 ◽  
Author(s):  
M. C. Cebrián ◽  
M. C. Córdoba-Sellés ◽  
A. Alfaro-Fernández ◽  
J. A. Herrera-Vásquez ◽  
C. Jordá

Viburnum sp. is an ornamental shrub widely used in private and public gardens. It is common in natural wooded areas in the Mediterranean Region. The genus includes more than 150 species distributed widely in climatically mild and subtropical regions of Asia, Europe, North Africa, and the Americas. In January 2007, yellow leaf spotting in young plants of Viburnun lucidum was observed in two ornamental nurseries in the Mediterranean area of Spain. Symptoms appeared sporadically depending on environmental conditions but normally in cooler conditions. Leaf tissue from 24 asymptomatic and five symptomatic plants was sampled and analyzed by double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany) and Alfalfa mosaic virus (AMV) (SEDIAG S.A.S, Longvic, France). All symptomatic plants of V. lucidum were positive for Alfalfa mosaic virus (AMV). The presence of AMV was tested in the 29 samples by one-step reverse transcription (RT)-PCR with the platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) using primers derived from a partial fragment of the coat protein gene of AMV (2). The RT-PCR assays produced an expected amplicon of 700 bp in the five symptomatic seropositive samples. No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR assays. One PCR product was purified (High Pure PCR Product Purification Kit; Roche Diagnostics, Mannheim, Germany) and directly sequenced (GenBank Accession No. EF427449). BLAST analysis showed 96% nucleotide sequence identity to an AMV isolate described from Phlox paniculata in the United States (GenBank Accession No. DQ124429). This virosis has been described as affecting Viburnum tinus L. in France (1). To our knowledge, this is the first report of natural infection of Viburnum lucidum with AMV in Spain, which might have important epidemiological consequences since V. lucidum is a vegetatively propagated ornamental plant. References: (1) L. Cardin et al. Plant Dis. 90:1115, 2006. (2) Ll. Martínez-Priego et al. Plant Dis. 88:908, 2004.


Sign in / Sign up

Export Citation Format

Share Document