Improving the toolbox to manage Phytophthora diseases of strawberry: searching for chemical alternatives

Author(s):  
Marcus Vinicius Marin ◽  
Natalia Peres

Florida strawberry production is affected by two economically important Phytophthora diseases, Phytophthora crown rot (PhCR) and leather rot (LR), caused primarily by P. cactorum and P. nicotianae. Although products are available, chemical control is limited to mefenoxam, phosphites, and azoxystrobin and resistance to mefenoxam and azoxystrobin has been reported. Both in vitro and in vivo assays were conducted to evaluate the effectiveness of eight different chemical classes on controlling PhCR and LR of strawberry. The fungicides mandipropamid, fluopicolide, oxathiapiprolin, and cymoxanil completely inhibited mycelial growth of both species at 1µg/ml. The same fungicides controlled LR and PhCR caused by P. cactorum, in detached fruit and greenhouse trials, respectively, including mefenoxam-resistant isolates. However, for PhCR caused by P. nicotianae only oxathiapiprolin and cymoxanil were effective in controlling the disease. Cyazofamid, fluazinam, propamocarb, and tebuconazole did not control PhCR caused by either Phytophthora spp. Except for tebuconazole, all fungicides tested reduced incidence of LR caused by P. cactorum in the detached fruit assay; in contrast, fluazinam, cyazofamid, and propamocarb had no effect on P. nicotianae. This study identifies four fungicides that could potentially be registered to manage both PhCR and LR of strawberry. The registration of additional fungicides with different modes of action would allow fruit and nursery growers to alternate products to reduce fungicide resistance risk.

Plant Disease ◽  
2021 ◽  
Author(s):  
Juliana Silveira Baggio ◽  
Marcus Vinicius Marin ◽  
Natalia A. Peres

Phytophthora crown rot, caused mainly by Phytophthora cactorum, and also by the recently reported P. nicotianae, is an important disease in the Florida strawberry annual production system. Mefenoxam is the most effective and widely used fungicide to manage this disease. However, due to pathogen resistance, alternatives to chemical control are needed. Phytophthora spp. were rarely recovered during the summer from soil of commercial farms where the disease was observed during the season. In a more detailed survey on research plots, neither of the two species was recovered one month after the crop was terminated and water was shut off. Therefore, Phytophthora spp. does not seem to survive in the soil over summer in Florida. In a field trial, asymptomatic nursery transplants harboring quiescent infections were confirmed as the major source of inoculum for these pathogens in Florida. Heat treatment of P. cactorum zoospores at 44oC for as little as 5 min was effective in inhibiting germination and colony formation; however, oospore germination was not inhibited by any of the tested temperatures in vitro. In the field, thermotherapy treatment of inoculated plants was shown to have great potential to serve as a non-chemical approach for managing Phytophthora crown rot in production fields and reducing mefenoxam-resistant populations in nursery transplants.


Author(s):  
Ibrahim E. Benzohra ◽  
Boubekeur S. Bendahmane ◽  
M. Youcef Benkada ◽  
Mohamed Mégateli ◽  
Hakima Belaidi

This study examined the effect of three synthetic fungicide, maneb “Manebe80®” chlorothalonil “Bravo®” and azoxystrobin “Ortiva®” on the incidence of ascochyta blight (AB) of chickpea caused by Ascochyta rabiei using three chickpea germplasm (ILC482, ILC484 and Flip 1025). The results, statisticaly reliable (C.V. less than 20%), indicated the in vitro test of chemical control has significant effect at P0.01, on the mycelial growth of pathogen. All three fungicides caused important MGI% (Mycelial growth inhibition rate), which varied between 30 and 66%. There was a significant action induced by chlorothalonil fungicide (54 – 65%), followed closely by azoxystrobin (46 – 63%) and maneb (30 – 65%). In the in vivo test of chemical control for AB incidence by detached leaves showed a remarkable percentage of reduction in the severity of ascochyta blight varied between 20 and 80%. We noticed that the systemic fungicide like azoxystrobin can reduce the ascochyta blight severity (RDS%), with ranging between 71 and 80%, for other two contact fungicides (chlorothalonil and maneb), the mycelia growth inhibition rate was close to 50% (from 20 to 47%). These results indicated that the systemic fungicides, like azoxystrobin, have a significantly reduced the incidence and development of ascochyta blight disease in the susceptible cultivars (ILC1929, ILC263 and ILC484).


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2017 ◽  
Vol 17 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Cristiene Costa Carneiro ◽  
Aroldo Vieira de Moraes-Filho ◽  
Amanda Silva Fernandes ◽  
Suzana da Costa Santos ◽  
Daniela de Melo e Silva ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


Sign in / Sign up

Export Citation Format

Share Document